

Lecture Notes in Computer Science 3350
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Manuel Hermenegildo Daniel Cabeza (Eds.)

Practical Aspects
of Declarative
Languages

7th International Symposium, PADL 2005
Long Beach, CA, USA, January 10-11, 2005
Proceedings

13

Volume Editors

Manuel Hermenegildo
University of New Mexico, Department of Computer Science
MSC 01 1130, Albuquerque, NM 87131, USA
E-mail: herme@unm.edu
and
Technical University of Madrid, Department of Computer Science
28660 Boadilla del Monte, Madrid, Spain
E-mail: herme@fi.upm.es

Daniel Cabeza
Technical University of Madrid, Department of Computer Science
28660 Boadilla del Monte, Madrid, Spain
E-mail: dcabeza@fi.upm.es

Library of Congress Control Number: 2004117186

CR Subject Classification (1998): D.3, D.1, F.3, D.2

ISSN 0302-9743
ISBN 3-540-24362-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11377474 06/3142 5 4 3 2 1 0

Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practioners to present original work
emphasizing novel applications and implementation techniques for all forms of
declarative concepts, including functional, logic, constraints, etc. Declarative lan-
guages build on sound theoretical foundations to provide attractive frameworks
for application development. These languages have been successfully applied to
a wide array of different real-world situations, including database management,
active networks, software engineering, decision support systems, or music com-
position; whereas new developments in theory and implementation have opened
up new application areas. Inversely, applications often drive the progress in the
theory and implementation of declarative systems, as well as benefit from this
progress.

The 7th PADL Symposium was held in Long Beach, California on January
10–11, 2005, and was co-located with ACM’s Principles of Programming Lan-
guages (POPL). From 36 submitted papers, the Program Committee selected 17
papers for presentation at the symposium, based upon at least three reviews for
each paper, provided from Program Committee members and additional referees.

Two invited talks were presented at the conference: one by Norman Ram-
sey (Harvard University) entitled “Building the World from First Principles:
Declarative Machine Descriptions and Compiler Construction”; and a second by
Saumya Debray (University of Arizona) entitled “Code Compression.”

Following what has become a tradition in PADL symposia, the Program
Committee selected one paper to receive the “Most Practical Paper” award.
This year the paper judged the best in terms of practicality, originality, and
clarity was “A Provably Correct Compiler for Efficient Model Checking of Mobile
Processes,” by Ping Yang, Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka.
This paper presents an optimizing compiler for the pi-calculus that improves the
efficiency of model-checking specifications in a logic-programming-based model
checker.

The PADL symposium series is sponsored in part by the Association for Logic
Programming (http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/) and
COMPULOG Americas (http://www.cs.nmsu.edu/~complog/). Thanks are
also due to the University of Texas at Dallas for its support. Finally, we want to
thank the authors who submitted papers to PADL 2005 and all who participated
in the conference.

November 2004 Manuel Hermenegildo
Daniel Cabeza

Program Chairs

Manuel Hermenegildo University of New Mexico, USA and
Technical University of Madrid, Spain

Daniel Cabeza Technical University of Madrid, Spain

Program Committee

Kenichi Asai Ochanomizu University, Japan
Manuel Carro Technical University of Madrid, Spain
Bart Demoen K.U.Leuven, Belgium
Robert Findler University of Chicago, USA
John Gallagher Roskilde University, Denmark
Hai-Feng Guo University of Nebraska at Omaha, USA
Gopal Gupta U. of Texas at Dallas, USA (General Chair)
Chris Hankin Imperial College London, UK
Joxan Jaffar National U. of Singapore, Singapore
Alan Mycroft Cambridge University, UK
Gopalan Nadathur U. of Minnesota, USA
Lee Naish U. of Melbourne, Australia
Simon Peyton-Jones Microsoft Research, USA
John Reppy University of Chicago, USA
Morten Rhiger Roskilde University, Denmark
Francesca Rossi University of Padova, Italy
Vitor Santos-Costa U. Federal do Rio de Janeiro, Brazil
Terrance Swift S.U. of New York at Stony Brook, USA
David S. Warren S.U. of New York at Stony Brook, USA

Referees

Maurice Bruynooghe
Ins de Castro Dutra
Chiyan Chen
Henning Christiansen
Gregory Cooper
Yifei Dong
Mrio Florido
David Greaves
ngel Herranz
Bharat Jayaraman
Siau-Cheng Khoo

Ricardo Lopes
Noelia Maya
Dale Miller
Rudradeb Mitra
Andrew Moss
Pablo Nogueira
Michael O’Donnell
Bernard Pope
Ricardo Rocha
Mads Rosendahl
Abhik Roychoudhury

Tom Schrijvers
David Scott
Mark Shinwell
Leon Sterling
Tom Stuart
Peter Stuckey
Eric Van Wyk
Kristen Brent Venable
Joost Vennekens
Razvan Voicu
Hongwei Xi

Table of Contents

Invited Talks

Building the World from First Principles:
Declarative Machine Descriptions and Compiler Construction 1

Norman Ramsey

Code Compression . 5
Saumya Debray

Papers

Functional Framework for Sound Synthesis . 7
Jerzy Karczmarczuk

Specializing Narrowing for Timetable Generation: A Case Study 22
Nadia Brauner, Rachid Echahed, Gerd Finke,
Hanns Gregor, and Frederic Prost

Character-Based Cladistics and Answer Set Programming 37
Daniel R. Brooks, Esra Erdem, James W. Minett, and Donald Ringe

Role-Based Declarative Synchronization for Reconfigurable Systems 52
Vlad Tanasescu and Pawe�l T. Wojciechowski

Towards a More Practical Hybrid Probabilistic Logic
Programming Framework . 67

Emad Saad and Enrico Pontelli

Safe Programming with Pointers Through Stateful Views 83
Dengping Zhu and Hongwei Xi

Towards Provably Correct Code Generation
via Horn Logical Continuation Semantics . 98

Qian Wang, Gopal Gupta, and Michael Leuschel

A Provably Correct Compiler for Efficient Model Checking
of Mobile Processes . 113

Ping Yang, Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka

An Ordered Logic Program Solver . 128
Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Improving Memory Usage in the BEAM . 143
Ricardo Lopes and Vı́tor Santos Costa

VIII Table of Contents

Solving Constraints on Sets of Spatial Objects . 158
Jesús M. Almendros-Jiménez and Antonio Corral

Discovery of Minimal Unsatisfiable Subsets of Constraints
Using Hitting Set Dualization . 174

James Bailey and Peter J. Stuckey

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 187
Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Improved Fusion for Optimizing Generics . 203
Artem Alimarine and Sjaak Smetsers

The Program Inverter LRinv and Its Structure . 219
Masahiko Kawabe and Robert Glück

A Full Pattern-Based Paradigm for XML Query Processing 235
Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

Type Class Directives . 253
Bastiaan Heeren and Jurriaan Hage

Author Index . 269

Building the World from First Principles:
Declarative Machine Descriptions

and Compiler Construction

(Abstract)

Norman Ramsey

Division of Engineering and Applied Sciences
Harvard University

http://www.eecs.harvard.edu/~nr

For at least 25 years, the most effective way to retarget systems software has been
by using machine descriptions. But “machine description” doesn’t mean what
you think. A traditional machine description does contain information about the
machine, but its utility is compromised in one of two ways:

– The description is useful only in support of a particular algorithm, such as
instruction-set emulation, LR parsing, or bottom-up tree matching.

– Information about the machine is inextricably intertwined with information
about a particular tool’s internal representation, such as a compiler’s inter-
mediate code.

The result is that a machine description used to build one tool – a compiler, as-
sembler, linker, debugger, disassembler, emulator, simulator, binary translator,
executable editor, verification-condition generator, or what have you – is typi-
cally useless for any other purpose. Another difficulty is that to write a machine
description, you have to be a double expert: for example, to write the machine
description used to retarget a compiler, you must know not only about the target
machine but also about the internals of the compiler.

My colleagues, my students, and I have been exploring an alternative: the
declarative machine description.

– It tries to favor no algorithm over any other.
– It is independent of any tool’s internal representation, and indeed, indepen-

dent of any tool’s implementation language.
– It describes only properties of the machine, preferably in a way that is de-

signed for analysis, not for execution.

We are focusing on properties that are used in the construction of systems soft-
ware. We have three long-term goals:

– Declarative machine descriptions should be reusable. That is, from just a
few descriptions of a machine, we want to build all of the software needed
to support that machine.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Norman Ramsey

– Declarative machine descriptions should decouple machine knowledge from
tool knowledge. That is, if you know all about a machine, you should be able
to retarget a tool by writing a description of the machine, even if you know
nothing about the tool.

– Declarative machine descriptions should meet the hardware halfway. That is,
our descriptions should be provably consistent with the formal descriptions
used to synthesize hardware.

We can realize these benefits only if we can solve a hard problem: instead of
relying on a human programmer to apply machine knowledge to the construction
of a particular tool, we must somehow build tool knowledge into a program gen-
erator that can read a machine description and generate the tool1. For example,
in our machine-description language SLED, we specify encoding and decoding
of machine instructions declaratively, by sets of equations. We then use an equa-
tion solver to generate encoders and decoders (assemblers and disassemblers) by
applying two kinds of tool knowledge: knowledge about relocatable object code
and knowledge about decoding algorithms.

All of which brings us to the title of this talk. What if, instead of writing a
code generator in a domain-specific language and calling the result a machine
description, we start with a true declarative machine description and build the
code generator from first principles? What are the first principles? What kinds
of tool knowledge are neded to generate a code generator? Why is the problem
hard?

We start with a simple, declarative machine description that answers two
questions:

– What is the mutable state of the machine?
– When an instruction is executed, how does that state change?

Given answers to these questions, building a simulator is straightforward. But
to build a compiler, we must be able to take a source program, understand its
semantics in terms of state change, then find a sequence of machine instructions
implementing that state change. This problem lies at the hard of building not
only a compiler but also many other tools: we must somehow generalize and
invert the information in the machine description.

The inversion problem has lain fallow for years. The key insight we bring
is that a code generator based on inversion need not produce good code – it
is enough to produce correct code. We know this because of the work of Jack
Davidson and his colleagues, who developed the following compilation strategy:

– Generate very näıve code
– Improve the code under the invariant that every node in the flow graph can

be represented by a single instruction on the target machine.
1 Program generators often dodge this problem by allowing a machine description to

“escape” to hand-written code. But hand-written code used to build one tool is
likely to be useless in building another, and especially if it contains library calls,
hand-written code can be nearly impossible to analyze.

Declarative Machine Descriptions and Compiler Construction 3

This simple strategy leads to very good machine code, and it has been applied
successfully in the po, vpo, and gcc compilers.

Using Davidson’s compilation strategy, we need to read a machine description
and generate four components:

– A register allocator, to map temporaries to machine registers
– A “code expander,” to select machine instructions
– A “recognizer,” to maintain the single-instruction invariant
– An emitter, to emit assembly language for each instruction

The talk will describe these components and how we can hope to generate them
from declarative machine descriptions. Our work is still very much in progress,
but we have two reasons for optimism:

– We don’t need descriptions of very many properties.
– We get a lot of mileage from one idea: binding time.

We also hope to be able to take machine-specific human knowledge and capture
it as universal truths of mathematics, which will then enable us to apply that
knowledge to new machines.

References

Manuel E. Benitez and Jack W. Davidson. 1988 (July). A portable global optimizer
and linker. Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, in SIGPLAN Notices, 23(7):329–338.

Jack W. Davidson and Christopher W. Fraser. 1984 (October). Code selection through
object code optimization. ACM Transactions on Programming Languages and Sys-
tems, 6(4):505–526.

Lee D. Feigenbaum. 2001 (April). Automated translation: Generating a code gener-
ator. Technical Report TR-12-01, Harvard University, Computer Science Technical
Reports.

Mary F. Fernández and Norman Ramsey. 1997 (May). Automatic checking of in-
struction specifications. In Proceedings of the International Conference on Software
Engineering, pages 326–336.

Norman Ramsey. 1996 (May)a. Relocating machine instructions by currying. ACM
SIGPLAN ’96 Conference on Programming Language Design and Implementation,
in SIGPLAN Notices, 31(5):226–236.

Norman Ramsey. 1996 (April)b. A simple solver for linear equations containing non-
linear operators. Software – Practice & Experience, 26(4):467–487.

Norman Ramsey. 2003 (May). Pragmatic aspects of reusable program generators. Jour-
nal of Functional Programming, 13(3):601–646. A preliminary version of this paper
appeared in Semantics, Application, and Implementation of Program Generation,
LNCS 1924, pages 149–171.

Norman Ramsey and Cristina Cifuentes. 2003 (March). A transformational approach
to binary translation of delayed branches. ACM Transactions on Programming Lan-
guages and Systems, 25(2):210–224.

Norman Ramsey and Jack W. Davidson. 1998 (June). Machine descriptions to build
tools for embedded systems. In ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’98), volume 1474 of LNCS, pages 172–188.
Springer Verlag.

4 Norman Ramsey

Norman Ramsey, Jack W. Davidson, and Mary F. Fernández. 2001. Design
principles for machine-description languages. Unpublished draft available from
http://www.eecs.harvard.edu/ nr/pubs/desprin-abstract.html.

Norman Ramsey and Mary F. Fernández. 1995 (January). The New Jersey Machine-
Code Toolkit. In Proceedings of the 1995 USENIX Technical Conference, pages
289–302, New Orleans, LA.

Norman Ramsey and Mary F. Fernández. 1997 (May). Specifying representations of
machine instructions. ACM Transactions on Programming Languages and Systems,
19(3):492–524.

Kevin Redwine and Norman Ramsey. 2004 (April). Widening integer arithmetic. In
13th International Conference on Compiler Construction (CC 2004), volume 2985
of LNCS, pages 232–249.

Michael D. Smith, Norman Ramsey, and Glenn Holloway. 2004 (June). A generalized
algorithm for graph-coloring register allocation. ACM SIGPLAN ’04 Conference on
Programming Language Design and Implementation, in SIGPLAN Notices, 39(6):
277–288.

Code Compression

(Abstract)

Saumya Debray

Department of Computer Science
University of Arizona

Tucson, AZ 85721
debray@cs.arizona.edu

Increasingly, we see a trend where programmeable processors are incorporated
into a wide variety of everyday devices, ranging from “smart badges,” copy and
fax machines, phones, and automobiles to traffic lights and wireless sensor net-
works. At the same time, the functionality expected of the software deployed on
such processors becomes increasingly complex (e.g., general-purpose operating
systems such as Linux on cell phones, intrusion-detection and related security
security measures on wireless sensor devices). The increasing complexity of such
software, and the reliability expected of them, suggest a plausible application
of declarative languages. However, programs in declarative languages very often
experience a significant increase in code size when they are compiled down to
native code. This can be a problem in situations where the amount of mem-
ory available is limited. This talk discusses a number of different techniques for
reducing the memory footprint of executables.

We begin with a discussion of classical compiler optimizations that can be
used to reduce the size of the generated code. While such optimizations have
traditionally focused on improving execution speed, they can be adapted quite
easily to use code size as the optimization criterion instead. Especially effective
are optimizations such as dead and unreachable code elimination, as well as
targeted function inlining (e.g., where the callee has exactly one call site, or
where inlining a function results in the elimination of so many instructions that
the resulting code is smaller than the original). These optimizations can be made
even more effective via aggressive interprocedural constant propagation and alias
analysis, since this can propagate information from the call sites of a function into
its body, potentially allowing conditionals in the body to be evaluated statically,
thus making it possible to identify more of the code as unreachable.

Further code size reduction is possible using various techniques for code fac-
toring, which aims to reduce code size by getting rid of repeated code fragments.
This is, in essence, simply an application of procedural abstraction: repeated
occurrences of a code sequence at various locations in a program are replaced by
a single instance of that code that is instead called from those locations. For this
to be effective, it is necessary to be able to handle code sequences that are similar
but may not be identical. We currently sue a low-level approach to dealing with
this, via register renaming at the basic block level. An alternative would be to

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 5–6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 Saumya Debray

use some sort of partial tree matching on a higher level program representation
such as syntax trees.

Classical optimizations, coupled with code factoring, gives code size reduc-
tions of around 30% on average. The main reason this value is not higher is the
constraint that the code be maintained in executable form. We can relax this
constraint by keeping code in a non-executable compressed form, and decom-
pressing it on the fly into a runtime buffer when needed. The main drawback
here is the runtime cost of decompression, which can be quite substantial. Fortu-
nately, most programs follow the so-called “80-20 rule,” which states in essence
that most of a program’s time is spent executing a small portion of its code; a
corollary is that most of a program’s code is executed only infrequently, if at
all. Judicious use of profile information to guide the selection of which code is
decompressed at runtime yields additional code size reductions of about 15% on
average, with runtime overheads of around 4%.

An orthogonal direction to code size reduction involves dynamic code muta-
tion. The idea here is to identify a set of “similar” code fragments and keep just
one representative copy of their code. At runtime, we simply edit the text sec-
tion of the executable to change the code of the representative appropriately to
construct the code fragment that is needed. The runtime mutations are carried
out by a “code editor” that is driven by an edit script that describes the edits
necessary to change one code fragment into another. This is conceptually simi-
lar to classical sequence alignment, except that in our case the edits are carried
out in situ, which makes insertion operations very expensive. We use clustering
algorithms driven by a notion of “distance” between code fragments that aims
to estimate the cost of editing one sequence to construct another. Initial experi-
ments suggest that such an approach may be useful for constructs such as C++
templates.

Functional Framework for Sound Synthesis

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France
karczma@info.unicaen.fr

Abstract. We present an application of functional programming in the domain of
sound generation and processing. We use the lazy language Clean to define purely
functional stream generators, filters and other processors, such as reverberators.
Audio signals are represented (before the final output to arrays processed by the
system primitives) as co-recursive lazy streams, and the processing algorithms
have a strong dataflow taste. This formalism seems particularly appropriate to
implement the ‘waveguide’, or ‘physically-oriented’ sound models. Lazy pro-
gramming allocates the dynamical memory quite heavily, so we do not propose
a real-time, industrial strength package, but rather a pedagogical library, offering
natural, easy to understand coding tools. We believe that, thanks to their simplic-
ity and clearness, such functional tools can be also taught to students interested
in audio processing, but with a limited competence in programming.

Keywords: Lazy streams, Sounds, DSP, Clean.

1 Introduction

The amplitude of a sound (for one channel) may be thought of as a real function f of
time t, and it is fascinating how much structural information it may contain [1]. In order
to produce some audible output, this function must be sampled, and transformed into a
signal, and this is the basic data type we shall work on. Sound may be represented at
many different levels, and if one is interested in the structure of sequences of musical
events, chords, phrases, etc., there is no need to get down to the digital signal processing
primitives. It may seem more interesting and fruitful to speak about the algebra of mu-
sical events, music combinators, etc. This was the idea of Haskore [2], whose authors
used Haskell to define and to construct a whole spectrum of musical “implementable
abstractions”. Haskore deals with high-level musical structures, and consigns the low-
level, such as the interpretation of the MIDI streams, or the spectral structure of sounds
to some back-end applications, MIDI players or CSound [3].

We decided to use the functional approach for the specification and the coding of
this “low end” sound generation process. This is usually considered a highly numerical
domain involving filter and wave-guide design [4], Fourier analysis, some phenomeno-
logical “magic” of the Frequency Modulation approach [5], or some models based on
simplified physics, such as the Karplus-Strong algorithm [6] for the plucked string, and
its extensions. But the generation and transformation of sounds is a constructive do-
main, dealing with complex abstractions (such as timbre, reverberation, etc.), and it
may be based on a specific algebra as well. A possible application of functional pro-
gramming paradigms as representation and implementation tools seems quite natural.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 7–21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 Jerzy Karczmarczuk

Software packages for music and acoustics are very abundant, some of them are based
on Lisp, such as CLM [7] or Nyquist [8], and their authors encourage the functional
style of programming, although the functional nature of Lisp doesn’t seem very im-
portant therein as the implementation paradigm. But the the interest of the usage of
functional tools in the DSP/audio domain is definitely growing, see the article [9], and
the HaskellDSP package of Matt Donadio [10].

We don’t offer yet a fully integrated application, but rather a pedagogical library
called Clarion1, in the spirit of, e.g., the C++ package STK de Perry Cook [11], but –
for the moment – much less ambitious, demonstrating mainly some models based on the
waveguide approach [4]. It has been implemented in a pure, lazy functional language
Clean [12], very similar to Haskell. Its construction focuses on:

– Co-recursive (lazy) coding of “data flow” algorithms with delay lines, filters, etc.
presented declaratively. This is the way we build the sound samples.

– Usage of higher-order combinators. We can define “abstract” instruments and other
sound processors at a higher level than what we see e.g., in Csound.

The dataflow approach to music synthesis, the construction of virtual synthesizers as
collections of pluggable modules is of course known, such systems as Buzz, PD or
Max/JMax [13–15] are quite popular. There is also a new sequential/time-parallel lan-
guage Chuck [16] with operators permitting to transfer the sound data streams between
modules. All this has been used as source of inspiration and of algorithms, sometimes
easier to find in library sources than in publications. . .

Our implementation does not neglect the speed issues, but because of dynamic
memory consumption the package is not suitable for heavy duty event processing. It
is, however, an autonomous package, able to generate audible output on the Windows
platform, to store the samples as .wav files, and to read them back. It permits to code
simple music using a syntax similar to that of Haskore, and to depict graphically sig-
nals, envelopes, impulse responses, or Fourier transforms. The choice of Clean has been
dictated by its good interfacing to lower-level Windows APIs, without the necessity of
importing external libraries. The manipulation of ‘unique’ unboxed byte arrays which
ultimately store the sound samples generated and processed as streams, seems suffi-
ciently efficient for our purposes. The main algorithms are platform-independent, and
in principle they could be coded in Haskell. The main purpose of this work is pedagogi-
cal, generators and transformers coded functionally are compact and readable, and their
cooperation is natural and transparent.

1.1 Structure of This Article

This text can be assimilated by readers knowing typical functional languages such as
Clean or Haskell, but possessing also some knowledge of the digital signal processing.
While the mastery of filters, and the intricacies of such effects as the reverberation
are not necessary in order to grasp the essential, some acquaintance with the signal
processing techniques might be helpful.

1 We acknowledge the existence of other products with this name.

Functional Framework for Sound Synthesis 9

We begin with some typical co-recursive constructions of infinite streams, and we
show how a dataflow diagram representing an iterative signal processing is coded as
a co-recursive, lazy stream. We show the construction of some typical filters, and we
present some instruments, the plucked string implemented through the Karplus-Strong
model, and simplified bowed string and wind instruments. We show how to distort the
“flow of time” of a signal, and we show a simple-minded reverberator.

2 Co-recursive Stream Generators

A lazy list may represent a process which is activated when the user demands the
next item, and then suspends again. This allows to construct infinite co-recursive se-
quences, such as [0, 1, 2, 3, . . .], coded as ints = intsFrom 0 where intsFrom

n=[n:intsfrom (n+1)], and predefined as [0 ..]. Such constructions are useful
e.g., for processing of infinite power series [18], or other iterative entities omnipresent
in numerical calculi. The “run-away” co-recursion is not restricted to functions, we may
construct also co-recursive data. The sequence above can be obtained also as

ints = [0 : ints+ones] where ones=[1 : ones]

provided we overload the (+) operator so that it add lists element-wise. Here the se-
quences yn for n = 0, 1, 2, . . . will represent samples of a discretized acoustic signal,
and for the ease of processing they will be real, although during the last stage they are
transformed into arrays of 8- or 16-bit integers. Already with [0 ..] we can construct
several sounds, e.g., a not very fascinating sinusoidal wave:

wave = map (\n -> sin(2*Pi*n*h)) [0 ..]

where h is the sampling period, the frequency divided by the sampling rate: the number
of samples per second. In order to cover the audible spectrum this sampling rate should
be at least 32000, typically it is equal to 44100 or higher.

In the next section we shall show how to generate such a monochromatic wave
by a recursive formula without iteration of trigonometric functions, but the essential
point is not the actual recipe. What is important is the fact the we have a piece of data,
that an infinitely long signal is treated declaratively, outside any loop or other syntactic
structure localized within the program. For efficiency we shall use a Clean specific type:
head-strict unboxed lists of reals, denoted by such syntax: [# 1.0,0.8, ...].

3 Simple Periodic Oscillator

One of the best known algorithmic generators of sine wave is based on the recurrent
formula: sin(nωh) = 2 cos(ωh) sin((n − 1)ωh) − sin((n − 2)ωh), where h is some
sampling interval, and ω = 2πf with f being the frequency. One writes the difference
equation obeyed by the discrete sequence: yn = c · yn−1 − yn−2 where c = 2 cos(ωh)
is a constant. One may present this as a dataflow “circuit” shown on Fig. (1). Here z−1

denotes conventionally the unit delay box.
Of course, the circuit or the sequence should be appropriately initialized with some

non-zero values for y0 and y1, otherwise the generator would remain silent. A Clean

10 Jerzy Karczmarczuk

infinite list generator which implements the sequence sin(2πft) with t = n/Sampling
Rate may be given in a typically functional, declarative style as

oscil fr = y where // DpiSR is 2π/SR
omh = DpiSR*fr // (divisor: global SamplingRate)
y = [# 0.0 : v]

v = [# sin omh : ((2.0*cos omh)*>v - y)]

Fig. 1. Sine wave generator

The values 0.0 = sin(0.0) and
sin(ωh) can be replaced by oth-
ers if we wish to start with an-
other initial phase. Note the cycle
in the definition of variables, with-
out laziness it wouldn’t work! The
operator (*>) multiplies a scalar
by a stream, using the standard
Map functional (overloading of map for [#] lists): (*>) x l = Map (\s->x*s) l;
we have also defined a similar operator (+>), which raises the values in a stream by
a constant, etc. The subtraction and other binary arithmetic operators have been over-
loaded element-wise for unboxed real streams, using the known functional zipWith.
Some known list functionals such as map, iterate or take in this domain are called
Map, Iterate, etc. This algorithm is numerically stable, but in general, in presence of
feedback one has to be careful, and know the behaviour of iterative algorithms, unless
one wants to exploit the imprevisible, chaotic generators. . . . Another stable co-recursive
algorithm may be based on a modified Euler method of solving the oscillator differen-
tial equation: ÿ = −ω2y (through ẏ = ωv; v̇ = −ωy). We get y equal to the sampled
sine, with y=[#0.0:y]+a*>v; v=[#1.0:v-a*>y]. A pure sinusoidal wave is not a
particularly fascinating example, but it shows already some features of our approach.

– As already mentioned, the sound signal is not a ‘piece of algorithm’ such as a
loop over an array, but a first-class data item, although its definition contains a
never-ending, recurrent code. We can add them in the process of additive synthesis,
multiply by some scalars (amplify), replicate, etc. The modularity of the program
is enhanced with respect to the imperative approach with loops and re-assignments.
Some more complicated algorithms, such as the pitch shift are also easier to define.

– We have a natural way of defining data which rely on feedback. The coding of IIR
filters, etc., becomes easy. In general, lazy streams seem to be a good, readable
choice for implementing many ‘waveguide’ models for sound processing [4].

With the stream representation it is relatively easy to modulate the signal by an enve-
lope, represented as another stream, typically of finite length, and normalized so that its
maximum is equal to 1, it suffices to multiply them element-wise. An exponential decay
(infinite) envelope can be generated on the spot as expatt r = Iterate ((*) r)

1.0. The parameterization of an arbitrary generator by an arbitrary envelope is more
involved, and depends on the generator. But, often when in definitions written in this
style we see c*>s where c is a constant, we may substitute m*s for it, where m is the
modulating stream. Thus, in order to introduce a 5 Hz vibrato (see fig. 9) to our oscil-
lator, it suffices to multiply v in {2*cos omh*>v} by, say, {(1.0+>0.001*>oscil

Functional Framework for Sound Synthesis 11

5.0))}, since the concerned gain factor determines the pitch, rather than the amplitude.
This is not a universal way to produce a varying frequence, we just wanted to show the
modularity of the framework. Some ways of generating vibrato are shown later.

It is worth noting that treating signals as data manipulated arithmetically permits
to code in a very compact way the instruments defined through the additive synthesis,
where the sound is a sum of many partials (amplitudes corresponding to multiples of
the fundamental frequency), for example:

additive freq amplist = y

where

m = [1.0 .. toReal(length amplist)]

y = Foldl (+) zeros // an infinite stream of zeros
(map (\(n,a)->a*>oscil(n*freq)) (zip2 m amplist))

oboe fr= additive fr [0.0021,0.0237,0.1,0.0513,0.045,0.061,0.0168]

tuba fr= additive fr [0.10095,0.15732,0.14992,0.09895,0.07178,...]

Envelopes, vibrato, etc. effects can be added during the post-processing phase.

4 Some Typical Filters and Other Simple Signal Processors

A filter is a stream processor, a function from signals to signals, x → y. The most
simple smoothing, low-pass filter is the averaging one: yn = 1/2(xn + xn−1). This
can be implemented directly, in an index-less, declarative style, as y = 0.5*>(x +

Dl x), where Dl x = [#0.0 : x]. If we are not interested in the first element, this
is equivalent to y = 0.5*>(x + Tail x), but this variant is less lazy. This is an
example of a FIR (Finite Impulse Response), non-recursive filter. We shall also use the
“Infinite Response”, recursive, feedback filters (IIR), where yn depends on yn−k with
k > 0, and whose stream implementation is particularly compact.

One of the standard high-pass filters, useful in DSP, the “DC killer”, 1-zero, 1-pole
filter, which removes the amplitude bias introduced e.g., by integration, is described by
the difference equation yn = b · (xn−xn−1)+ a · yn−1, and constitutes thus a (slightly
renormalized) differentiator, followed by a “leaky” integrator, everything depicted in
Fig. 2. Here a is close to 1, say 0.99, and b = (1 + a)/2.

Fig. 2. DC blocker circuit

The effect of the filter on, say, a
sample of brown (integrated white)
noise is depicted on Fig. (3), with
b = 0.97, and the equivalent Clean
program is shown below, again, it
is a co-recursive 1-liner, where a
stream is defined through itself, de-
layed. This delay is essential in or-

der to make the algorithm effective; our code, as usually in DSP, should not contain any
“short loops”, where a recursive definition of a stream cannot resolve the value of its
head.

dcremove a (xs=:[# x0:xq]) = y where

y=a*>Dl y+((1.0+a)/2.0)*>(xq-xs)

12 Jerzy Karczmarczuk

Fig. 3. DC removal from the “brown noise”

The damping sensitivity, and losses are bigger when a is smaller. Note the differ-
ence between the diagram and the code: The delay and the multiplication by b have
been commuted, which is often possible for time-independent, linear modules, and here
economises one operation. The parameter pattern syntax a=:α is equivalent to Haskell
a@α, and permits to name and to destructure a parameter at the same time.

Fig. 4. An all-pass filter

Another feedback transducer of
general utility is an ‘all-pass fil-
ter’, used in reverberation mod-
elling, and always where we
need some dispersion – differ-
ence of speed between various
frequency modes. The variant
presented here is a combination
of ‘comb’ forward and feedback filters, and it is useful e.g. for the transformation of
streams generated by strings (piano simulators, etc.). The definition of a simple all-pass
filter may be

allpass m b x = b*>z + v where

v = delay m z // Prepend m zeros to z
z = x - b*>v

5 The Karplus-Strong Model of a Plucked String

Finally, here is another sound generator, based on a simplified ‘waveguide’ physical
model [4]. A simplistic plucked string (guitar- or harpsichord-like sound) is constructed
as a low-pass-filtered delay line with feedback. Initially the line is filled-up with any
values, the (approximate) “white noise”: a sequence of uncorrelated random values be-
tween ±1, is a possible choice, standard in the original Karplus-Strong model.

Fig. 5. Plucked string

On output the neighbouring values are averaged,
which smooths down the signal, and the result is
pumped back into the delay line. After some pe-
riods, only audible frequencies are the ones deter-
mined by the length of the delay line, plus some
harmonics. Higher frequencies decay faster than
the lower ones, which is the typical feature of the
plucked string, so this incredibly simple model gives a quite realistic sound! The im-
plementation is straightforward, the only new element is the usage of a finite-length
segment and the overloaded concatenation operator (++|).

Functional Framework for Sound Synthesis 13

karstr f = y where

prfx = Take (toInt (SR/f)) whitenoise

y = prfx ++| 0.5 *> (y + Tl y) // or more delayed: y+Dl y

The noise signal is a stream generated by an iterated random number generator. The
package disposes of several noise variants, brown, pink, etc., useful for the implemen-
tation of several instruments and effects.

A more complicated string (but equally easy to code from a given diagram), with
external excitation, some slightly detuned parallel delay lines, additional all-pass filters
etc., is used to simulate piano, harpsichord or mandolin, but also bowed instruments
(violin), and some wind instruments, since mathematically, strings and air columns are
similar. We shall omit the presentation of really complex instruments, since their prin-
ciple remains the same, only the parameterization, filtering, etc. is more complex.

Since a looped delay line will be the basic ingredient of many instruments, it may
be useful to know where the model comes from. If y(x, t) denotes the displacement of
air or metal, etc. as a function of position (1 dimension) and time, and if this displace-
ment fulfils the wave equation without losses nor dispersion (stiffness): ∂2y/∂t2 = c2 ·
∂2y/∂x2, its general solution is a superposition of two any travelling waves: y(x, t) =
yr(x− ct) + yl(x + ct), where c is the wave speed. For a vibrating string of length L,
we have c = 2f0L, where f0 is the string fundamental frequency.

After the discretisation, the circuits contain two “waveguides” – delay lines corre-
sponding to the two travelling waves. They are connected at both ends by filters, re-
sponsible for the wave reflection at both ends of the string (or the air column in the bore
of a wind instrument). Because of the linearity of the delay lines and of typical filters,
it is often possible to ‘commute’ some elements, e.g., to transpose a filter and a delay
line, and to coalesce two delay lines into one. One should not forget that an open end of
a wind instrument should be represented by a phase-inversion filter, since the outgoing
low-pressure zone sucks air into the bore, producing a high-pressure incoming wave.

6 Digression: How to Make Noise

A typical random number generator is a ‘stateful’ entity, apparently not natural to code
functionally, since it propagates the “seed” from one generation instance to another.
But, if we want just to generate random streams, the algorithm is easy. We start with
a simple congruential generator based on the fact that Clean operates upon standard
‘machine’ integers, and ignores overflows, which facilitates the operations modulo 232.
It returns a random value between ±1, and a new seed. For example:

rand1 seed

seed = 599479 + seed*25781083

r = seed bitand 2147483647

= (toReal r/2147483648.0,seed)

Despite its appearance, this is a purely functional construction, the # syntax is just a
sequential variant of let, where the “reassignment” of a variable (here: seed) is just
an introduction of a new variable, which for mnemotechnical purposes keeps the same
name, screening the access to its previous, already useless instance. We write now

14 Jerzy Karczmarczuk

rndnoise seed

(z,seed) = rand1 seed

= [#z : rndnoise seed]

This noise can be used in all typical manipulations, for example the “brown noise”
which is the integral of the above “white noise” is just

brownnoise = z where z=Dl (rndnoise someSeed + z)

In the generation of sounds the noise need not be perfect, the same samples can be
reused, and if we need many streams it suffices to invoke several instances of rnd-
noisewith different seeds. It is worth noticing that in order to generate noise in a purely
functional way, we don’t need an iterative generator with propagating seed!. There ex-
ist pure functions which behave ergodically, the values corresponding to neighbouring
arguments are uncorrelated, they vary wildly, and finally they become statistically in-
dependent of their arguments. A static, non-recursive pure function

ergodic n

n = (n<<13) bitxor n // Use let n’= . . . if you don’t like
= toReal (n*(n*n*599479+649657)+1376312589)/2147483648.0

mapped through the list [0, 1, 2, 3, 4, . . .] gives the result shown in Fig. 6. We have also
used this variant of noise.

Fig. 6. An ergodic function

7 More General Filters, and Power Series

We have seen that a simple recurrence, say yn = b0 ·xn− a1 · yn−1 is easy to represent
as a stream (here: y = b0*>x - a1*>Dl y), but a general m-zero, l-pole filter: yn =∑m

k=0 bk · xn−k −
∑l

k=1 ak · yn−k would require a clumsily looking loop.
However, both terms are just convolutions. The DSP theory [17] tells us that they

become simple products when we pass to the z transform of our sequences. Concretely,
if we define x(z) =

∑∞
n=0 xnz−n, and introduce appropriate power series for the se-

quences b, a = [a0 = 1, a1, a2, . . .] and y, we obtain the equation a(z) · y(z) =
b(z) · x(z), or y(z) = H(z) · x(z), where H = b/a. The stream-based arithmetic oper-
ations on formal power series are particularly compact [18]. Element-wise adding and
subtracting is trivial, uses Map (+) and Map (-). Denoting x = x0 + z−1x̄, where x̄
is the tail of the sequence, etc., it is easy to show that

w ≡ (w0 + z−1w̄) = b · x = (b0 + z−1b̄)(x0 + z−1x̄) , (1)

reduces to the algorithm: w0 = b0x0, and w̄ = b0x̄ + b̄x.

Functional Framework for Sound Synthesis 15

The division w = b/a is the solution for [w0 : w̄] of the equation b = a · w, and is
given by the recurrence w0 = b0/a0 and w̄ = (b̄ − w0ā)/a. So, the code for a general
filtering transform is y = (b<*>x)</>a with

(<*>) [#b0:bq] a=:[#a0:aq] = [# b0*a0 : b0*>aq + bq<*>a]

(</>) [#b0:bq] a=:[#a0:aq] = [# w0 : (bq - w0*>aq)</>a]

where w0 = b0/a0

It was not our ambition to include in the package the filter design utilities (see [10]),
but since the numerator and the denominator of H are lists equipped with the appro-
priate arithmetic, it is easy to reconstruct their coefficients from the positions of the
zeros, by expansions. But, since the division of series involves the feedback, the pro-
grammer must control the stability of the development, must know that all poles should
lie within the unit disk in order to prevent the explosive growth, and be aware that the
finite precision of arithmetics contributes to the noise. But the numerical properties of
our algorithms are independent of the functional coding, so we skip these issues.

8 More Complex Examples

8.1 Flute

One of numerous examples of instruments in the library STK of Perry Cook [11] is a
simple flute, which must contain some amount of noise, the noise gain g on the diagram
depicted on fig. 7 is of about 0.04. The flute is driven by a “flow”, the breath strength,
which includes the envelope of a played note. There are two delays, the bore delay
line, which determines the period of the resonance frequency, and a two times shorter
embouchure delay block. The filter H is a reflection low-pass filter given by yn =
0.7xn + 0.3yn−1. The gain coefficients arec1 = 0.5, and c2 = 0.55. The code is short.

flute freq flow = w where

lpass1 x = y where y=0.7*>x + 0.3*>Dl y

nlins xs = Map (\x -> x*(1.0 - x*x))xs

u=0.04*>(flow*whitenoise) + flow

v=u+0.5*>p

p=tdelay (1.0/freq) w // delay parameterized by real time
w=lpass1 (0.55*>p + nlins (tdelay (0.5/freq) v))

Fig. 7. A simple flute

16 Jerzy Karczmarczuk

An important ingredient of the instrument is the nonlinearity introduced by a cubic
polynomial. Välimäki et al. [19] used a more complicated model. They used also an
interpolated, fractional delay line, which is an interesting subject per se.

8.2 Bowed String

In Fig. 8 we see another example of a non-linearly driven, continuous sound instrument,
a primitive “violin”, with the string divided into two sections separated by the bow,
whose movement pulls the string. Of course, after a fraction of second, the string slips,
returns, and is caught back by the bow. The frequency is determined, as always, by the
resonance depending on the string length.

Fig. 8. A bowed string

bowed amp freq = y // amp is the bowing force
where

basedel = 2.0*SR/freq-4.0 // Base delay, split into neck and bridge
p = 0.6 - 2205.0/SR // Phenomenological filter pole position
bowv = (0.03+0.2*amp)*>ones // Max bow velocity; ones=[1,1,1,...]
brefl= ~(bridge p 0.95 brdel)

nrefl= ~(delay (toInt(0.872764*basedel)) (brefl+nvel)) // Neck
vdiff = bowv-brefl-nvel // Velocity difference; steering value
nvel = vdiff*Map bowtable vdiff

brdel= delay (toInt(0.127236*basedel)) (nrefl+nvel)

y = biquad 500.0 0.85 0.6 brdel // Output resonating filter

where bridge is the bridge reflection filter, and bowtable – the non-linearity (it could
be table-driven, but here it is a local function). The function biquad is a filter. They are
defined as in the source of STK:

bridge p g s = y where

b0=(if(p>0.0) (1.0-p) (1.0+p))

y = (g*b0)*>s + p*>Dl y

Functional Framework for Sound Synthesis 17

bowtable x

r=((abs(3.0*x)+0.75)^(-4.0))

= if (r<1.0) r 1.0 // Conditional clipping
biquad freq rad g s = y // Biquad resonating filter
where

a2=rad*rad

v = (g*(0.5-0.5*a2))*>(s - Dl (Dl s))

z = Dl y

y = v + (2.0*rad*cos (freq*DpiSR))*>z - a2*>Dl z

Now, in order to have a minimum of realism, here, and also for many other instruments,
the resonating frequency should be precise, which conflicts with the integer length of
the delay line. We need a fractional delay. Moreover, it should be parameterized, in
order to generate vibrato (or glissando); we know that the dynamic pitch changes are
obtained by the continuous modification of the string length. Our stream-based frame-
work, where the delay is obtained by a prefix inserted in a co-recursive definition seems
very badly adapted to this kind of effects. We need more tools.

9 Fractional Delay and Time Stretching

Some sound effects, such as chorus or flanging [20], are based on dynamical delay lines,
with controllable delay. For good tuning, and to avoid some discretisation artefacts is
desirable to have delay lines capable of providing a non integer (in sampling periods)
delay times. Such fractional delay uses usually some interpolation, linear or better (e.g.,
Lagrange of 4-th order). The simplest linear interpolation delay of a stream u by a
fraction x is of course v=(1.0-x)*>u + x*>Dl u, where the initial element is an
artefact; it is reduced if we replace the 0 of Dl by the head of u. Smith proposes the
usage of an interpolating all-pass filter, invented by Thiran [21], and co-recursively
defined as

ifractd x s=:[#s0:_] = v + a*>u

where

a=(1.0-x)/(1.0+x)

u = s - a*>v

v = [#s0:u]

This module should be combined with a standard, integer delay. But how to change the
big delay dynamically? The classical imperative solution uses a circular buffer whose
length (distance between the read- and write pointers) changes during the execution
of the processing loop. In our case the delay line will become a stream processor. We
begin with a simple, static time distortion. The function warp a x where x is the in-
put stream, and a – a real parameter greater than −1.0, shrinks or expands the dis-
crete “time” of the input stream. If a = 0, then yn = xn, otherwise y0 = x0; y1 =
x1+a; . . . yn = xn·(1+a), where an element with fractional index is linearly interpo-
lated. For positive α: xn+α ≡ (1− α)xn + αxn+1. Here is the code:

18 Jerzy Karczmarczuk

warp a [#x0 : xq] = [#x0 : wrp a x0 xq] where

wrp g y0 ys=:[#y1:yq]|g>0.0 = wrp (g-1.0) y1 yq

=[#(1.0+g)*y1-g*y0 : wrp (g+a+1.0) y0 ys]

It is possible to vary the parameter a, the package contains a more complicated pro-
cedure, where the delay parameter a is itself a stream, consumed synchronously with
x. It can itself be a periodic function of time, produced by an appropriate oscillator.
In such a way we can produce the vibrato effect, or, if its frequency is high enough –
an instrument based on the frequency modulation. Moreover, if warp is inserted into
a feedback, e.g., u=prefix ++| warp dx (filtered u) with a rather very small
dx, the recycling of the warped u produces a clear glissando of the prefix.

The technique exploited here is fairly universal, and plenty of other DSP algorithms
can be coded in such a way. If we want that a “normal” function f from reals to reals,
and parameterized additionally by a, transform a stream x, we write simply Map (f

a) x. Now, suppose that after every n basic samples the parameter should change. This
may be interesting if together with the basic audio streams we have control streams,
which vary at a much slower rate, like in Csound. We put the sequence of parameters
into a stream as, and we construct a generalized mapping functional

gmap f s n x = wm 0 s x where

wm k as=:[#a0:aq] x=:[#x0:xq]|k<n = [#f a0 x0:wm (k+1) as xq]

= wm 0 aq x

This may be used to modulate periodically the amplitude in order to generate the
tremolo effect. A modified warp function, parameterized not by a constant but by a
stream, if driven by an oscillator produces the vibrato effect. They are shown in Fig. 9.

Fig. 9. Tremolo and vibrato

10 Reverberation

One of fundamental sound effects, which modifies the timbre of the sound is the com-
position of the original with a series of echos, which after some initial period during
which the individual components are discernible, degrade into a statistical, decaying
noise. A “unit”, infinitely sharp sound represented by one vertical line in Fig. 10, is
smeared into many. Fig. 10 corresponds to the model of John Chowning, based on the
ideas of Schroeder [22], see also [23]. The reverberation circuit contains a series of all-
pass filters as shown on fig. 4, with different delay parameters. This chain is linked to a
parallel set of feed-forward comb filters, which are “halves” of the all-pass filters. They
are responsible for the actual echo. Fig. 11 shows our reverberation circuit, whose code
is given below. It is simple, what is worth noticing is a compact way of representing the
splitting of a stream into components which undergo different transformations, as given
by the auxiliary functional sumfan. The operator o denotes the composition. Thanks

Functional Framework for Sound Synthesis 19

Fig. 10. Reverberation response

Fig. 11. Reverberation module

to the curried syntax of Clean, the definition of a processing module composed out of
elements linked serially and in parallel, doesn’t need the stream argument.

reverb =

schr 0.03 o schr 0.008 o schr 0.003 o

sumfan [fcf 0.065 0.742,fcf 0.075 0.733,

fcf 0.095 0.715,fcf 0.125 0.691]

where // fcf is a forward comb filter
fcf tm g x = x + g*>tdelay tm x // Time, gain, stream

schr tm = allpass tm 0.707 // Schröder allpass filter, below

sumfan l x

[l1:lq]=map (\f->f x) l

= 0.25*>foldl (+) l1 lq

allpass tm b x = b*>z + v where // Co-recursive dispersion filter
v = tdelay tm z

z = x - b*>v

11 Conclusions and Perspectives

We have shown how to implement some useful algorithms for the generation and trans-
formation of sound signals in a purely functional, declarative manner, using lazy streams
which represented signals. The main advantage of the proposed framework is its com-
pactness/simplicity and readability, making it a reasonable choice to teach sound pro-
cessing algorithms, and to experiment with. We kept the abstraction level of the pre-
sentation rather low, avoiding excessive generality, although the package contains some
other, high-level and parameterized modules. This is not (yet?) a full-fledged real-time

20 Jerzy Karczmarczuk

generating library, we have produced rather short samples, and a decent user interface
which would permit to pameterize and test several instruments in a way similar to STK
[11] is under elaboration. The paper omits the creation of high-level objects: musical
notes and phrases, not because it has not been done, or because it is not interesting,
on the contrary. But this has been already treated in Haskore papers, and other rather
music-oriented literature.

Our package can compute Fourier transforms, and contains other mathematical util-
ities, such as the complex number algebra, and a small power-series package. It has
some graphic procedures (the signal plots presented in the paper have been gener-
ated with Clarion). We have coded some more instruments, as a clarinet, or a primi-
tive harpsichord. Clarion can input and output .wav files, and, of course, it can play
sounds, using the Windows specific PlaySound routine. We have generated streams up
to 2000000 elements (about one minute of dynamically played sound at the sampling
rate of 32000/sec.), and longer. In principle we might generate off-line sound files of
much bigger lengths, but in order to play sound in real time it is necessary to split the
audio stream in chunks. Our system uses heavily the dynamic memory allocation, and
the garbage collection may become cumbersome. It is also known that the temporal ef-
ficiency of lazy programs (using the call-by-need protocol) is usually inferior to typical,
call-by-value programs. We never tried to implement a full orchestra in Clarion. . .

Clarion remains for the moment rather a functional, but pedagogical feasibility
study, than a replacement for Csound or STK, those systems are infinitely more rich.
We wanted to show on a concrete example how the functional composition and lazy
list processing paradigms may be used in practice, and we are satisfied. This work will
continue.

Acknowledgements

I owe generous thanks to Henning Thielemann for interesting and useful comments,
and for inspiring conversation.

References

1. John William Strutt (Lord Rayleigh), The Theory of Sound, (1877).
2. Paul Hudak, Tom Makucevich, Syam Gadde, Bo Whong, Haskore Music Notation – an Al-

gebra of Music, J. Func. Prog. 6:3, (1996), pp. 465–483. Also: Paul Hudak, Haskore Music
Tutorial, in: Advanced Functional Programming (1996), pp. 38–67. The system is main-
tained at: www.haskell.org/haskore/.

3. Richard Boulanger, The Csound Book, (2000). See also the site www.csounds.com
4. Julius O. Smith, Center for Computer Research in Music and Acoustics (CCRMA), Stanford

University, Web publications at www-ccrma.stanford.edu/~jos/, (2003). Also:
Physical modelling using digital waveguides, Computer Mus. Journal 16, pp. 74–87, (1992).

5. J. Chowning, The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,
Journal of Audio Eng. Soc. 21(7), (1973).

6. Kevin Karplus, A. Strong, Digital Synthesis of Plucked Strings and Drum Timbres, Computer
Mus. Journal 7:2, (1983), pp. 43–55. See also: D.A. Jaffe, J.O. Smith, Extensions of the
Karplus-Strong Plucked String Algorithm, Comp. Mus. Journal 7:2, (1983), pp. 56–69.

Functional Framework for Sound Synthesis 21

7. Bill Schottstaedt and others, Common Lisp Music, site
ccrma-www.stanford.edu/software/clm/.

8. Roger B. Dannenberg, Nyquist Reference Manual,
www-2.cs.cmu.edu/~rbd/doc/nyquist/.

9. Henning Thielemann, Audio Processing Using Haskell, Proc. 7th Int. Conf. on Digital Audio
Effects (DAFx’04), Naples, pp. 201–206, (2004).

10. Matthew Donadio, HaskellDsp sources, site haskelldsp.sourceforge.net.
11. Perry Cook, site www-ccrma.stanford.edu/CCRMA /Software/STK/, see also

the book: Real Sound Synthesis for Interactive Applications, A.K. Peters, (2002).
12. Rinus Plasmeijer, Marko van Eekelen, Clean Language Report, version 2.1, site

www.cs.kun.nl/~clean/.
13. Oskari Tammelin, Jeskola Buzz, Modular software music studio,

see e.g., www.buzzmachines.com/, or www.jeskola.net/.
14. Miller Puckette, Pure Data: PD, Documentation,

crca.ucsd.edu/~msp/Pd_documentation/
15. François Déchelle, Various IRCAM free software: jMax and OpenMusic, Linux Audio De-

velopers Meeting, Karlsruhe, (2003). See also freesoftware.ircam.fr/.
16. Ge Wang, Perry Cook, ChucK: a Concurrent, On-the-fly, Audio Programming Language,

Intern. Comp. Music Conf., Singapore (2003). See also: chuck.cs.princeton.edu/.
17. Ken Steiglitz, A DSP Primer: With Applications to Digital Audio and Computer Music,

Addison-Wesley, (1996).
18. Jerzy Karczmarczuk, Generating power of Lazy Semantics, Theor. Comp. Science 187,

(1997), pp. 203–219.
19. R. Hänninen, V. Välimäki, An improved digital waveguide model of a flute with fractional

delay filters, Proc. Nordic Acoustical Meeting, Helsinki, (1996), pp. 437–444.
20. Sophocles Orphanidis, Introduction to Signal Processing, Prentice-Hall, (1995).
21. J.P. Thiran, Recursive digital filters with maximally flat group delay, IEEE Trans. Circuit

Theiry 18 (6), Nov. 1971, pp. 659–664.
22. M.R. Schroeder, B.F. Logan, Colorless artificial reverberation, IRE Transactions, vol. AU-9,

pp. 209–214, (1961).
23. J.O. Smith, A new approach to digital reverberation using closed waveguide networks, Pro-

ceedings, ICMC (1985).

Specializing Narrowing
for Timetable Generation: A Case Study

Nadia Brauner, Rachid Echahed, Gerd Finke,
Hanns Gregor, and Frederic Prost

Institut d’Informatique et de Mathématiques Appliquées de Grenoble,
Laboratoire Leibniz, 46, av Félix Viallet, 38000 Grenoble, France

{Nadia.Brauner,Rachid.Echahed,Gerd.Finke,Hanns.Gregor,Frederic.Prost}
@imag.fr

Abstract. An important property of strategies used to solve goals in
functional logic programming (FLP) languages is the complete explo-
ration of the solution space. Integrating constraints into FLP proved to
be useful in many cases, as the resulting constraint functional logic pro-
gramming (CFLP) offers more facilities and more efficient operational
semantics. CFLP can be achieved by means of conditional rewrite sys-
tems with a narrowing-based operational semantics. A common idea to
improve the efficiency of such operational semantics is to use specific al-
gorithms from operations research as constraint solvers. If the algorithm
does not return a complete set of solutions, the property of completeness
might be lost. We present a real world timetabling problem illustrating
this approach. We propose an algorithm, obtained as an integration of
three known optimization algorithms for the linear assignment problem
(LAP), enumerating solutions to the LAP in order of increasing weight,
such that resolution of goals is complete again. We show, how the narrow-
ing process can be tailored to use this algorithm and provide an efficient
way to solve the timetable generation problem.

Keywords: Functional-logic programming, Constraints, Narrowing,
Timetable generation.

1 Introduction

In software development, it is often practical to use different programming para-
digms for modeling different parts of the problem to solve. A system integrating
various programming paradigms allows the programmer to express each part of
the problem with the best suitable concepts. The formalization of the whole pro-
gram also becomes easier and the resulting software design is often considerably
less complex.

By using a conditional rewrite system with narrowing as operational se-
mantics, it is possible to combine constraint logic programming [14] and func-
tional logic programming [12] in a single constraint functional logic programming
framework (e.g., [19]). A program in such a framework is composed of conditional
rewrite rules of the form

L→ R | Qi(s1, . . . , smi), i ∈ {0..n}

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 22–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Specializing Narrowing for Timetable Generation: A Case Study 23

where Qi(s1, . . . , smi) denotes a list (conjunction), possibly empty, of conditions.
This rule can be applied as a classical rewrite rule only if the conditions Qi hold.
Typically, Q is an equation or an m-ary constraint (predicate). With appropriate
narrowing strategies, it is possible to obtain a complete operational semantics
for the interpretation of such conditional rewrite rules. Nevertheless, for some
specific constraints the evaluation time of narrowing, which is essentially an
exhaustive search among the possibilities, can be prohibitive. In order to cope
with this problem under those specific conditions, it is possible to use operations
research algorithms, which are much more efficient. In order to maintain the
completeness of the calculus when specialized constraint solvers are integrated,
each of these solvers needs to return a complete set of solutions. In this paper we
focus on a particular case involving a solver for the linear assignment problem.

The linear assignment problem is efficiently solved by the Hungarian method
[16]. This algorithm returns exactly one optimal solution to the stated problem.
It thereby leads to an incomplete operational semantics. A first aim of this paper
is to propose an algorithm for the linear assignment problem that enumerates all
solutions to the assignment problem in order of decreasing quality (increasing
cost). This is done by the combination of three known algorithms. The complete-
ness of classical operational semantics of logic or functional logic programming
languages with constraints is then recovered. A second aim is to illustrate the
proposed algorithm by a case study: the timetable generation for medical staff.

We assume the reader familiar with narrowing-based languages (see e.g. [3]).
Thus we rather start, in section 2, by introducing the three algorithms for the
assignment problem which we propose to combine. Then we show in section 3
how a combination of these algorithms can be done in order to enumerate all
possible (but non-optimal) assignments. Section 4 presents a practical case study,
namely timetable generation of medical staff in a Parisian hospital. We illustrate
how declarative programming can be efficiently used in such a case thanks to
this new complete algorithm for LAP. Finally, we conclude and discuss further
works in section 5. Due to lack of space, some presentations have been shortened.
More details could be found in [4].

2 Linear Assignment Problem: Definition and Solutions

In this section we precise the linear assignment problem and give a brief overview
of three algorithms from literature about this problem. The first one, the Hun-
garian method, gives exactly one answer, the second one enumerates all opti-
mal assignments, while the final one considers suboptimal assignments. Detailed
descriptions of the presented algorithms may be found in [4] or in the cited
literature.

2.1 Definition

A graph G = (V, E) with vertex set V and edge set E is said to be bipartite, if
V can be partitioned into two sets S and T such that in each of these sets no
two vertices are connected by an edge. A subset M of E is called a matching, if

24 Nadia Brauner et al.

no vertex in V is incident to more than one edge in M . A perfect matching is a
matching M such that every vertex of the graph is incident to exactly one edge
in M . Such a matching can only exist, if |S| = |T |. A bipartite graph is said to
be complete, if (si, tj) ∈ E for every pair of si ∈ S and tj ∈ T .

Given a complete weighted bipartite graph G = (S ∪ T, E) with integer
weights wij (in this paper we consider positive weights) associated to every edge
(si, tj) ∈ E, the problem of finding a minimum weight perfect matching M is
known as the linear assignment problem (LAP). This problem can be expressed
in the form of a linear program by introducing variables xij with

xij =

{
1 if (si, tj) ∈M , and
0 otherwise.

The complete linear programming formulation of an LAP of size n herewith
becomes

Constraints:
n∑

i=1

xij = 1
n∑

j=1

xij = 1

Objective: Minimize
n∑

i,j=1

wijxij

The definition of an LAP can easily be extended to cover incomplete bipartite
graphs and graphs in which |S| �= |T |. In the first case, wij is set to ∞ whenever
(si, tj) �∈ E, and a solution to an LAP only exists if

∑n
i=1

∑n
j=1 wijxij < ∞. In

a graph with |S| > |T |, a set T ′ of |S|− |T | additional vertices can be introduced
with weights wij ≡ 0 (or the minimum of weights if negative weights are allowed)
for all si ∈ S. Figure 1 shows the graph for an LAP with |S| = 4, |T | = 3, and
one additional vertex t4.

2.2 Algorithms for Solving the Linear Assignment Problem

The so-called Hungarian method [16, 13] (or Kuhn-Munkres algorithm) solves the
assignment problem in polynomial time. It is based on work of the Hungarian

s1

•
4 9

��
��

��
��

��
��

��
��

��

1

������������������������������0

��
s2

•2

��
��

��
��

��
��

��
��

��5
8

��
��

��
��

��
��

��
��

��
0

������������������������������
s3

•13

������������������������������
7

��
��

��
��

��
��

��
��

�� 1

0

��
��

��
��

��
��

��
��

��
s4

•
4

��

12

������������������������������
9

��
��

��
��

��
��

��
��

�� 0

•
t1

•
t2

•
t3

•
t4

Fig. 1. Graph for an LAP of size 4.

Specializing Narrowing for Timetable Generation: A Case Study 25

mathematicians König and Egerváry and is an adapted version of the primal-
dual algorithm for network flows. For an assignment between two vertex sets of
cardinality n the time complexity of the algorithm is O(n3). It operates on the
n × n weight matrix W = wij (which is often referred to as cost matrix), and
computes a permutation σ = (j1, . . . , jn) of columns 1, . . . , n such that the sum∑

i wiji is minimized.
∑

i wiji then equals the total weight of the assignment.
The Hungarian method finds an optimal assignment by incrementally apply-

ing transformations to the weight matrix. In each step the set of column per-
mutations that correspond to optimal assignments remains unchanged. In the
end, a matrix W ′ is obtained, in which an optimal assignment can be identified
easily.

While the Hungarian method returns exactly one minimum cost perfect
matching, more than one optimal solution might exist. Uno proposed an al-
gorithm for the enumeration of the complete set of optimal solutions given one
optimal assignment [23]. His algorithm is based on the fact that the matrix W ′

can be used to exclude all edges that cannot be part of any optimal assignment
from G, thereby obtaining a graph G′. In G′, every perfect matching corre-
sponds to a minimum weight perfect matching in G. The time complexity for
enumerating all of the Np perfect matchings in G′ is O(nNp).

The problem of enumerating all possible assignments in order of increasing
cost is also known as the problem of finding K-best perfect matchings. Murty’s
original algorithm [22] has been improved and generalized by Lawler in [17]
and last by Chegireddy and Hamacher [8]. The idea is to partition the solution
space P of the minimum weight perfect matching problem for bipartite graphs
iteratively into subspaces P1, . . . , Pk. For each of these subspaces Pi, the optimal
solution Mi and second best solution Ni to the perfect matching problem are
known. The Mi are also known to represent the k-best perfect matchings within
P . As the Pi are a partition of the solution space P , the next best solution in
P has to be one of the second best matchings Ni, namely the matching with
minimum weight wNi . Let Nj be this matching with minimum weight among all
second best matchings Ni, and Pj the corresponding solution space. We partition
the solution space Pj into two subspaces P ′

j and Pk+1 such that P ′
j contains Mj

and Pk+1 contains Nj. Our (k + 1)-best matching Mk+1 is then set to Nj , and
solution space Pj is replaced by P ′

j . As Nj(= Mk+1) is no longer included in Pj ,
we calculate new second best matchings Nj and Nk+1 for the solution spaces Pj

and Pk+1. We are then prepared to proceed with finding the next best solution.
The algorithm requires a means to partition the solution space given two

different solutions, and an algorithm to find the second best perfect matching in
a bipartite graph, given a minimum weight perfect matching.

Chegireddy and Hamacher present an algorithm that takes O(n3) time to find
a second best perfect matching Ni, given the best perfect matching in solution
space Pi. In every iteration this algorithm is called two times, which yields an
overall complexity of O(Kn3) for the (K−1) iterations as stated by the authors.

But we also have to take into account the operation of finding the second
best matching Ni with minimum weight. Using a priority queue, this is possible

26 Nadia Brauner et al.

in O(log k) with k being the length of the queue. For the K iterations this
yields

∑K
k=1 log k = log K!, which is actually growing faster than the factor K

in Kn3. Thus, for the time complexity of the algorithm as a function of n and
K, we obtain O(Kn3 + log K!). For most practical applications of the algorithm
however, this difference is not very important, as K and its influence on the
running time is relatively small: the dependency on the problem size n is of
greater interest.

3 A Complete Constraint Solver
for the Assignment Problem

In this section we explain how do we designed a complete algorithm for the
LAP. Recall that completeness of a constraint solver (i.e., the ability of the
algorithm to compute a set representing all solutions of given constraints) is
required to ensure the completeness of the whole system integrating narrowing
and the considered solver. In our case, in order to obtain a single homogeneous
and complete solver for the LAP, all of the three algorithms presented in section
2.2 are combined. At first, an optimal solution to the LAP is computed, then all
required information in order to calculate the following solutions is stored. The
solver returns the solution and a handle to the stored information. Afterwards,
the next best solution to the LAP based on the stored information is computed.

The Hungarian method is used to calculate the initial assignment required by
the two other algorithms. As Uno’s algorithm is a lot more efficient for enumer-
ating optimal solutions than the algorithm by Chegireddy and Hamacher, this
algorithm is used first. Then comes the enumeration of suboptimal solutions in
order of increasing weight using the algorithm for enumerating K-best solutions.

The transition between the Hungarian method and Uno’s algorithm only
consists of the construction of the graph G′ (see, section 2.2). The transition
from Uno’s algorithm to the algorithm of Chegireddy and Hamacher is more
complicated, as we have to partition the solution space P into Np subspaces,
each containing one of the Np optimal solutions, which can be seen as the Np-
best solutions to the stated LAP.

We proceed similarly with the algorithm for finding the K-best solutions.
The solution space is partitioned by creating the two edge sets Ii and Oi for
each optimal solution Mi, with i ∈ 1, . . . , Np. When the algorithm has finished,
solution subspace Pi is defined as the subspace containing exactly those solutions
that contain all edges in Ii, and none of the edges in Oi.

The computation of Ii and Oi is done incrementally. The sets I1 and O1 are
initially empty. Now suppose that we have a list of k solutions M1, . . . , Mk with
corresponding solution spaces P1, . . . , Pk. The computation induced by another
solution Mk+1 is as follows. We first have to find out which solution space Pi

(i = 1, . . . , k) Mk+1 belongs to. This can be done by checking, if all edges in
Ii are contained in Mk+1 and none of the edges in Oi is contained in Mk+1.
This process is repeated until the matching solution space Pi is found. We then
proceed, as in the algorithm by Chegireddy and Hamacher for the insertion of

Specializing Narrowing for Timetable Generation: A Case Study 27

the solution Mk+1. Once obtained the list of all Np optimal solutions, the second
best solution is computed for each of solution spaces P1, . . . , PNp .

We now address the complexity of this transition. By inserting a solution,
two edges are added to the sets Ii and Ok+1; thus at the end, all of these sets
together contain 2(Np − 1) edges. This results in a time complexity of O(Np).
Checking, whether a certain edge is contained in a solution, is possible in O(1).
This matching procedure must be carried out for each of the Np solutions, which
yields a total complexity of O(N2

p). Next, the difference between two solutions
must be found, each time a solution is inserted. It results in a complexity of
O(Npn) for inserting all of the Np solutions. Finally, the second best solution has
to be computed for each of the Np solution spaces, which can be done in O(Npn

3).
The total complexity for the transition is therefore O(N2

p +Npn+Npn
3), which

is the same as O(N2
p + Npn

3).

4 A Case Study: Timetabling of Medical Staff

Due to the complicated and often changing set of constraints, timetabling prob-
lems are very hard to solve, even for relatively small instances. This is why one
of the more successful approaches in the area of timetabling is constraint logic
programming. It is used to combine the advantages of declarative programming
(facility to handle symbolic constraints) and efficient solver algorithms.

In this section we present a case study using our hybrid system. A first
version of this case [5] was done with a standard evaluation strategy. In this
older version the system was sometimes not able to find a solution even if one
was theoretically possible. Thanks to our complete constraint solver no solution
is missed anymore by our system.

The idea to get the best of both worlds, is to use a specific operations re-
search algorithm for a particular constraint to be solved, and use the standard
operational semantics for the other constraints. In our case study we use the algo-
rithm from section 3 for LAP constraints and standard narrowing of conditional
rewrite rules for the others.

4.1 Timetabling of Medical Staff

We have successfully tested the enhancement of narrowing with the solver we
proposed in section 3 on a real world application. The problem consists in the
generation of a timetable for the personnel of a Parisian hospital for one week.
There are ten shifts (or blocks) for one week, a morning and a late shift for each
of the five workdays. The staff is composed of physicians and interns. For each
shift the available staff has to be assigned to the open services according to their
qualifications. Such an assignment can be represented as follows:

Monday AM
Echography Stomatology Emergency

Bill Bob Murray

28 Nadia Brauner et al.

This shift means that Bill is assigned to the service of Echography, Bob to
the service of Stomatology and Murray to the service of Emergency on Monday
morning.

In order to obtain an assignment of medical staff to the services, we use
the algorithm of section 3. Therefore, the vertex sets of section 2.1 have to be
interpreted as services and medical staff. Notice that since there are at least
as many staff members as services (if it is not the case, then the assignment
problem is unsolvable), and since the LAP is defined for n × n matrices, we
introduce virtual “off work” services. The weights are computed following the
suitability of some staff member to some service. I.e. some medical doctors may
prefer, or may be more qualified for certain services. Weights also depend on
the assignments in other shifts. For example, an infinite weight (i.e. a very large
value) is set when the assignment is physically impossible (staff member not
working for instance) and semi-infinite weights when the assignment would lead
to violation of administrative constraints.

A timetable is acceptable if it fulfills a set of constraints of very different kind
and importance. First, all of the open services have to be assigned appropriately
qualified staff members. For some services, on a given day, the staff has to be
different for the morning and late shifts. For other services it is the opposite, the
staff has to be the same all day long. Policies also state that no one should work
more than three times on the same service during a week. Also, the workload
should be distributed as fairly as possible. An additional constraint is that every
staff member should have two afternoons off work per week. These examples do
not form an exhaustive list of all constraints (mandatory or not) required for an
acceptable timetable.

At this point the reader may notice that there are two large classes of con-
straints. The first one gathers constraints which are local to a single shift. Ba-
sically, they consist in the LAP, i.e. once assigned to a service, a staff mem-
ber cannot be assigned elsewhere. Pre-assignment, which is obtained by staff
members when they give their schedule (day-off for the week), is also local. It
consists mainly in the assignment (which is done by setting the weight to 0) of
staff members to virtual services. The second class of constraints are the ones
with inter-shifts scope (e.g. no more than three assignments per week on a same
service). Those two classes are given a different treatment in our implementation
and have interactions. Indeed, a locally optimal LAP solution may lead, because
of inter-shifts constraints, to a globally inconsistent set of constraints. Suppose
for instance that Bill has been assigned to the same service, say Echography,
three times in a row from Monday AM, while Bob has been assigned to Stom-
atology. It is not possible anymore to assign Bill to the service of Echography.
Now suppose that, later in the week, Bob is off work and that only Bill may be,
due to other constraints, assigned to Echography. We get a set of constraints
which is impossible to satisfy. Now, if on Monday AM we switch Bill and Bob, a
global solution may be possible, even if the assignment for the shift on Monday
AM is sub-optimal. Therefore, it can be useful to find another locally optimal

Specializing Narrowing for Timetable Generation: A Case Study 29

solution, or even a sub-optimal one, in order to build a global solution. Hence,
the use of the algorithm from section 3 to enumerate all solutions is mandatory.

4.2 Implementation: Modifying Narrowing
by Integrating a Complete LAP Solver

Our implementation is based on constraint functional logic programming. Pro-
grams are sets of conditional rewrite rules of the form l → r | c. Informally, any
instance, say σ(l), of l can be rewritten into the right-hand side under the same
instance, say σ(r), provided that the instance of the condition σ(c) is satisfied,
see e.g., [19] for a detailed presentation. A goal is a multiset of basic conditions
(usually equations). The operational semantics solves goals using narrowing: it
produces a substitution of variables that occur in the goal.

A cost is associated with the violation of every constraint imposed on an
acceptable timetable. The more important the constraint is, the higher is the
cost. For every shift a cost matrix is computed. It contains the costs for assigning
each of the available staff members to the open services. The LAP solver is then
used to find an assignment of the staff members to the services, which minimizes
the total cost, using the Hungarian method. If an acceptable assignment for a
shift is found, the cost matrix for the following shift will be calculated based
on previous assignments. This process continues until a timetable for the entire
week is obtained.

It is possible that for some shift, no acceptable assignment can be found by
the Hungarian method due to assignments in previous shifts. In this case, the
LAP solver needs to be called again in order to find alternative assignments for
previously assigned shifts. This backtracking mechanism is integrated into the
narrowing process.

Within the conditional rewrite system used to represent the constraints of
an acceptable timetable [4], two rules are essential for timetable generation:

timetable tt → true | (tt=timetable scheme) and
(is timetable tt)

is timetable empty → true
is timetable (cons (shift day period assignments) tail)

→ true |
(is timetable tail) and
(linear assignment (compute matrix

tail) assignments).

The first rule (timetable) contains two conditions stating that an accept-
able timetable, say tt, consists of ten shifts (tt = timetable scheme), and that
these shifts have to contain assignments that satisfy the imposed constraints
(is timetable tt). The second rule (is timetable) is defined recursively: An
empty list of shifts represents a valid timetable. A nonempty list of shifts rep-
resents a valid timetable, if the tail of the list contains assignments that do
not violate any of the constraints, and if the first shift contains valid assign-
ments. The latter is ensured by the constraint linear assignment, which calls

30 Nadia Brauner et al.

our algorithm for the LAP with the cost matrix that is calculated based on the
previous assignments by compute matrix tail, and other constraints that are
represented very naturally using rewrite rules. Sample rules are:

present (physician Gerd) Monday PM → true
open Echography Friday AM → false
unqualified (physician Fred) Emergency → true

The first rule declares that Gerd is present on Monday PM, and therefore can
be assigned to a service. The second rule declares that a service is closed, so no
working physician for this shift should be assigned to this service. Finally the
last rule declares that Fred is not qualified for the service of Emergency. Such
rules are used to compute the weights of assignments.

Computation in constraint functional logic programming consists of goal solv-
ing. A goal – like the condition in a conditional rewrite rule – thereby consists
of a list of equations and constraints. A goal is solved, if a substitution of the
variables occurring in the goal is found such that all equations hold and all
constraints are satisfied.

The goal to generate a timetable is of the form timetable x = true? Thus,
the narrowing process has to find a satisfying substitution for variable x. For
this purpose a stack of goals is maintained as well as partial substitutions that
might lead to a complete satisfying substitution. This corresponds to a depth
first traversal of the search space generated by narrowing. At the start, this
stack only contains the initial goal entered. Then, for each narrowing step, the
goal and the partial substitution on top of the stack are removed. A satisfying
substitution for the first equation or constraint in the goal is looked for. For
each such substitution, a new goal and partial substitution are put on top of
the stack. Whenever a conditional rewrite rule is used in the narrowing step, its
conditions have to be added to the goal. If a satisfying substitution for all of the
variables has been found, it is displayed as a possible solution to the initial goal.

When computing a timetable, the goal timetable x = true is replaced with
x = timetable scheme and is timetable x = true. Once the first equation
has been solved by substituting x with a timetable scheme that contains variables
for each service to fill, the rule is timetable is applied recursively. It goes on
until the goal becomes a list of ten constraints linear assignment; one for each
shift of the week.

A constraint solver that only uses the Hungarian method to find a solution
to the assignment problem would solve these constraints one at a time. It com-
putes a substitution that represents an optimal assignment and then removes the
constraint from the goal, before it is put back on top of the stack for the next
narrowing step. This strategy, however, is not complete, and in our example, as
shown earlier, acceptable timetables might not be found, even though they exist.

In our current implementation, the Hungarian method is used initially to
compute a solution to the constraint linear assignment. Instead of simply
removing the constraint from the goal that is put back on top of the stack,
two goals are put on the stack. The first goal still contains the constraint
linear assignment for the shift that has just been solved, but it is put onto the

Specializing Narrowing for Timetable Generation: A Case Study 31

stack together with the handle to the stored information that the LAP solver
returned after the first call. The next time that this goal is removed from the
stack, the LAP algorithm will return the next best assignment, if another ac-
ceptable assignment exists. The second goal to be put on top of the stack is
the same as in an implementation only based on the Hungarian method. This
goal is the next to be removed from the stack in the following narrowing step.
The narrowing process in the case that acceptable assignments are found by
the Hungarian method for every shift is thus the same as if only the Hungarian
method was used as a constraint solver.

The difference between the two only becomes important, if for one of the
shifts, no assignment satisfying all of the constraints that an acceptable timetable
has to fulfill could be found. In this case, an implementation only based on the
Hungarian method for solving the LAP would fail, as it could not solve the goal
on top of the stack, and the stack would be empty. In our current implementation,
there would be no acceptable assignment for the shift on top of the stack, either,
but afterwards the stack would not be empty. Instead, the next goal on top
would yield the next best solution for the previous shift.

After a solution has been found for all ten shifts, the program offers to search
for alternative timetables by continuing the narrowing process. By first trying
to find an assignment for each shift, and backtracking to the previous shift if no
such assignment exists, the described strategy implements a simple depth first
search of the solution space. At this point we have to point out that this strategy
does not guarantee an optimal solution from a global point of view. Indeed, the
best choice for a shift may lead to a branch in which global cost is actually higher
than if a less optimal solution would have been chosen.

In the following, we assume that we can decide if a given timetable is valid
or not by adding the cost for the violated constraints, even without knowing
the order, in which the shifts have been assigned1. In this case, we obtain a
complete timetabling algorithm that finds all acceptable schedules, if only we
consider suboptimal solutions for the blocks (shifts) until the cost for a block
gets higher than the maximum cost for a timetable. If the optimal assignment
for a block has a higher cost than the maximum cost for a timetable, we can
be sure that the subset of assigned shifts is already violating more constraints
than allowed. Hence, regardless of later assignments, we can never obtain a valid
timetable and thus have to step back and consider an alternative assignment for
a previous block.

4.3 The Solution Search Tree

With these observations, we are now ready to define the backtracking policy.
First, we use a fixed order of assigning the shifts. We define two constants
failure bound and backtrack bound. The meaning of the first constant is that
there is not enough qualified staff for a shift, if the minimum cost of assignment

1 This is actually our intention, even though we could construct examples, in which
the total cost differs slightly depending on the order of assignment

32 Nadia Brauner et al.

is at least equal to failure bound. This problem cannot be solved by trying dif-
ferent assignments for previous shifts, and so we can stop the search for a valid
timetable, as we can be sure that there is none. If the minimum cost for a certain
shift equals or exceeds the second constant, backtrack bound, this means that
the assignments that have been found so far cannot be part of any acceptable
timetable, even though with different assignments there might exist one.

The search for a solution is then carried out in the following way. For ev-
ery shift, we calculate the optimal assignment based on the previously assigned
blocks. If for one shift the cost of this optimal assignment is greater than or equal
to backtrack bound, we return to the previous block and try an alternative op-
timal solution and continue with the next block. If no more optimal solutions
exist, we try suboptimal solutions until the cost exceeds backtrack bound, in
which case we step back another block. If for some shift the minimum cost of
assignment equals or exceeds failure bound, we stop the search.

We give an example to illustrate the search of a timetable using the presented
backtracking scheme. Figure 2 shows a possible search tree for a timetable con-
sisting of five shifts. A solution Ai stands for an assignment for one shift. The
indices represent the order in which these solutions are found. For each solution,
we state if the solution is optimal with respect to the previously assigned blocks
(o), suboptimal (s) or if the assignment is not acceptable (f).

We start by finding an assignment A1 of minimum cost for the first block.
We find optimal assignments A2 and A3 for blocks 2 and 3. But in the fourth
block it turns out that there is no valid timetable for the whole week containing
the assignments A1–A3, because the least expensive solution A4 already exceeds
the value of backtrack bound. We step back to block three, find assignments
A5 and A7, which also cannot be extended to a valid timetable. A3, A5 and A7

represent the only optimal solutions for block three given the assignments A1

and A2. So we have to try suboptimal assignments. We find the next cheapest
assignment A9, which already exceeds backtrack bound. We now know that the
assignments A1 and A2 cannot be extended to an acceptable timetable, so we
have to consider alternative substitutions for block 2. It turns out that A2 was
the only optimal assignment for block 2, hence we try suboptimal solutions. The
next solution cannot be extended to a valid timetable either, but assignment
A12 can. Finally, we find the acceptable solution consisting of assignments A1,
A12, A13, A14 and A15. We could now try to find alternative solutions by first
re-assigning one of the five blocks, and then completing the timetable by finding
assignments for the subsequent shifts.

The solution search strategy is complete with respect to finding acceptable
timetables whenever they exist. For the first block, we try all possible assign-
ments in order of increasing cost, until the cost of a solution exceeds the value of
the constant backtrack bound. Thus, every assignment for the first shift, that
could be part of a timetable for the whole week, is considered. For each of these
assignments, we try all assignments for the next shift that are consistent with
those of the first block and could possibly yield a valid timetable for the whole
week. This strategy is pursued for each of the ten blocks. Thus, we only cut

Specializing Narrowing for Timetable Generation: A Case Study 33

A1(o)

��������������

		
		

		
		

block 1

A2(o)

��������������

��
��

��
��

A10(s) A12(s) block 2

A3(o) A5(o) A7(o) A9(f) A11(f) A13(o) block 3

A4(f) A6(f) A8(f) A14(o) block 4

A15(o) block 5

Fig. 2. A possible search tree for a timetable for five shifts

branches of the search tree, if the assignments in the current subset of shifts
already violate too many constraints. We can therefore be sure not to ignore any
acceptable solution in our search.

For a more precise presentation of the complete set of inference rules for goal
transformation we refer to [4]. Let G be a goal. Our proposition consists in giving
a particular instance of the following rule where Csol(p(t1, . . . , tn)) is computed
by the algorithm from section 3:

[p(t1, . . . , tn)] ∪G

σ(G)

if σ ∈ Csol(p(t1, . . . , tn))
with Csol(p(t1, . . . , tn)) being
a complete set of solutions for
constraint p(t1, . . . , tn)

where p is an n-ary constraint.

4.4 Practical Results

We have tested the implementation on several generated test cases with real
data from the planning of a week for a Parisian hospital. The real world exam-
ple involved around 20 staff members that had to be assigned to 11 services.
An implementation only using the Hungarian method fails in general to find a

34 Nadia Brauner et al.

solution for this problem. The implementation using the complete LAP algo-
rithm was able to find an acceptable timetable with one backtracking step in
less than 20 seconds on a 500MHz Pentium III PC. For the generated cases, the
program found a solution to a part of the problems within less than five minutes.
For others, no solution was found within reasonable time. This was partly due
to overconstrained problems, for which no acceptable timetables existed, and
partly due to the backtracking strategy. The simple depth-first search that we
have implemented performs very well for assignment conflicts that are caused by
the assignments made in the previous few shifts. But it is bad for resolving con-
straints that require re-assignments for shifts that have been assigned relatively
early in the goal solving process.

For the problem of timetable generation, the program has to be tested on
more real data in order to determine its performance in practice. Also, it would
give some material to try other heuristics for a better traversal of the search
space. Random test cases are not sufficient for evaluating performance on real
data. In cases, where a timetable cannot be found in reasonable time, the pro-
gram can still be used to generate a timetable by allowing more constraints
to be violated. This might already facilitate the process of finding acceptable
timetables, if the program is used as a supporting tool.

5 Conclusion

We have proposed an algorithm for LAP, obtained as an integration of three
known optimization algorithms, which enumerates a complete set of solutions
in order of increasing cost. We have discussed its integration into a constraint
functional logic programming language. This system has been tested on a real
world problem of timetabling for medical staff. It improves earlier approaches
of this kind of problems (with a highly complicated hierarchy of constraints) by
combining the expressive facility of declarative programming and the efficiency
of operations research algorithms.

The presented depth-first traversal of the solution space performs well for con-
straints that can be resolved by re-assigning a shift that has been assigned only
a few steps before, whereas it does not perform very well for global constraints.
Thus, the search for solutions satisfying all of the stated constraints might be
improved by employing different backtracking heuristics and strategies. Finding
a generally applicable heuristic might be difficult, if not impossible, task.

In the recent proposals for the solution of timetabling problems one can dis-
tinguish between two main approaches ([7, 18]). One is based on optimization
techniques from operation research like simulated annealing, genetic algorithms
and tabu search (e.g. [2, 6, 15, 24]). The second approach is based on constraint
programming (e.g. [1, 20, 21]). But to our knowledge our proposition mixing
declarative programming and the use of an extended version of the Hungarian
method enumerating all solutions (thus retaining completeness) is a novelty.

Several directions for future works are possible. For instance taking into ac-
count dynamic constraints as in the on-line management of a fleet of vehicles.
For this we would have to modify the operational semantics of a system com-

Specializing Narrowing for Timetable Generation: A Case Study 35

bining declarative programming and concurrency such as [9]. Another direction
would be to enhance the techniques for an efficient traversal of the search space.
As we mentioned in section 4.4, we need more practical tests to develop such
heuristics. It could be useful to consider other works in this field, for instance
[11, 10].

References

1. S. Abdennadher and H. Schlenker. Nurse scheduling using constraint logic pro-
gramming. In B. McKay, X. Yao, C. S. Newton, J.-H. Kim, and T. Furuhashi, edi-
tors, Proceedings of the Sixteenth National Conference on Artificial Intelligence and
the Eleventh Innovative Applications of Artificial Intelligence Conference, IAAI-
99, Orlando, Florida, July 1999, pages 838–843. AAAI Press/MIT Press, 1999.

2. U. Aickelin and K. A. Dowsland. An indirect genetic algorithm for a nurse schedul-
ing problem. Computers and Operations Research, 31:761–778, 2004.

3. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776 – 822, July 2000.

4. N. Brauner, R. Echahed, G. Finke, H. Gregor, and F. Prost. A complete assignment
algorithm and its application in constraint declarative languages. Technical Report
111, Cahier du Laboratoire Leibniz,
http://www-leibniz.imag.fr/NEWLEIBNIZ/LesCahiers/, September 2004.

5. N. Brauner, R. Echahed, G. Finke, F. Prost, and W. Serwe. Intégration des
méthodes de réécriture et de recherche opérationnelle pour la modélisation et la
résolution de contraintes : application à la planification de personnel médical. In
GISEH 2003, Lyon, January 2003.

6. E. K. Burke, P. D. Causmaecker, and G. V. Berghe. A hybrid tabu search al-
gorithm for the nurse rostering problem. In B. McKay, X. Yao, C. S. Newton,
J.-H. Kim, and T. Furuhashi, editors, Simulated Evolution and Learning, Second
Asia-Pacific Conference on Simulated Evolution and Learning, SEAL ‘98, Can-
berra, Australia, November 24–27 1998, Selected Papers, volume 1585, pages 93–
105. Springer, Berlin, 1999.

7. A. Caprara, F. Focacci, E. Lamma, P. Mello, M. Milano, P. Toth, and D. Vigo.
Integrating constraint logic programming and operations research techniques for
the crew rostering problem. Software Practice and Experience, 28:49–76, 1998.

8. C. R. Chegireddy and H. W. Hamacher. Algorithms for finding k-best perfect
matchings. Discrete Applied Mathematics, 18:155–165, 1987.

9. R. Echahed and W. Serwe. Combining mobile processes and declarative program-
ming. In J. Lloyd et al., editors, Proceedings of the 1st International Conference
on Computational Logic (CL 2000), volume 1861 of Lecture Notes in Artificial
Intelligence, pages 300 – 314, London, july 2000. Springer Verlag.

10. T. Eiter, W. Faber, C. Koch, N. Leone, and G. Pfeifer. Dlv – a system for declara-
tive problem solving. In C. Baral and M. Truszczynski, editors, Proceedings of the
8th International Workshop on Non-Monotonic Reasoning (NMR’2000), Brecken-
ridge, Colorado, USA, April 2000.

11. W. Faber, N. Leone, and G. Pfeifer. Optimizing the computation of heuristics for
answer set programming systems. In T. Eiter, W. Faber, and M. Truszczynski, ed-
itors, Logic Programming and Nonmonotonic Reasoning — 6th International Con-
ference, LPNMR’01,, volume 2173 of Lecture Notes in AI (LNAI), Logic Program-
ming and Nonmonotonic Reasoning — 6th International Conference, LPNMR’01,
September 2001. Springer Verlag.

36 Nadia Brauner et al.

12. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19 & 20:583 – 628, 1994.

13. A. Holland and B. O’Sullivan. Efficient vickrey-pricing for grid service providers.
In Joint Annual Workshop of the ERCIM Working Group on Constraints and the
CoLogNET area on Constraint and Logic Programming, July 2003.

14. J. Jaffar and J.-L. Lassez. Constraint logic programming. In In Proc. Fourteenth
Annual ACM Symp. on Principles of Programming Languages, POPL’87, pages
111–119, 1987.

15. L. Kragelund and B. Mayoh. Nurse scheduling generalised. citeseer.nj.nec.com/
kragelund99nurse.html, 1999.

16. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

17. E. L. Lawler. A procedure for computing the k-best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 7(18):401–405, 1972.

18. W. Legierski. Search strategy for constraint-based class–teacher timetabling. In
E. Burke and P. D. Causmaecker, editors, Practice and Theory of Automated
Timetabling IV, Fourth International Conference, Gent, Belgium, August 2002,
Selected Revised Papers, volume 2740, pages 247–261. Springer, Berlin, 2003.

19. F.-J. López-Fraguas. A general scheme for constraint functional logic program-
ming. In H. Kirchner and G. Levi, editors, Proceedings of the Third International
Conference on Algebraic and Logic Programming, volume 632 of lncs, pages 213–
227. Springer Verlag, 1992.

20. A. Meisels, E. Gudes, and G. Solotorevsky. Employee timetabling, constraint net-
works and knowledge-based rules: A mixed approach. In E. Burke and P. Ross,
editors, Practice and Theory of Automated Timetabling, First International Con-
ference, Edinburgh, UK, August 29–September 1, 1995, Selected Papers, volume
1153, pages 93–105. Springer, Berlin, 1996.

21. T. Moyaux, B. Chaib-draa, and S. D’Amours. Satisfaction distribuée de con-
straintes et son application à la génération d’un emploi du temps d’employés. In
Actes du 5e Congrès International de Génie Industriel, Québec, QC, Canada, 26–
29 Octobre, 2003.

22. K. G. Murty. An algorithm for ranking all the assignments in order of increasing
cost. Operations Research, 16:682–687, 1968.

23. T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings
in bipartite graphs. In H. W. Leong, , H. Imai, and S. Jain, editors, Algorithms
and Computation, volume 1350 of lncs, pages 92–101. Springer Verlag, 1997.

24. C. A. White and G. M. White. Scheduling doctors for clinical training unit rounds
using tabu optimization. In E. Burke and P. D. Causmaecker, editors, Practice and
Theory of Automated Timetabling IV, Fourth International Conference, Gent, Bel-
gium, August 2002, Selected Revised Papers, volume 2740, pages 120–128. Springer,
Berlin, 2003.

Character-Based Cladistics
and Answer Set Programming

Daniel R. Brooks1, Esra Erdem2, James W. Minett3, and Donald Ringe4

1 Department of Zoology, University of Toronto, Toronto, Canada
2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria

3 Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
4 Department of Linguistics, University of Pennsylvania, Philadelphia, USA

Abstract. We describe the reconstruction of a phylogeny for a set of taxa, with
a character-based cladistics approach, in a declarative knowledge representation
formalism, and show how to use computational methods of answer set program-
ming to generate conjectures about the evolution of the given taxa. We have ap-
plied this computational method in two domains: to historical analysis of lan-
guages, and to historical analysis of parasite-host systems. In particular, using
this method, we have computed some plausible phylogenies for Chinese dialects,
for Indo-European language groups, and for Alcataenia species. Some of these
plausible phylogenies are different from the ones computed by other software.
Using this method, we can easily describe domain specific information (e.g. tem-
poral and geographical constraints), and thus prevent the reconstruction of some
phylogenies that are not plausible.

1 Introduction

Cladistics (or phylogenetic systematics), developed by Willi Henig [17], is the study
of evolutionary relations between species based on their shared traits. Represented di-
agrammatically, these relations can form a tree whose leaves represent the species, in-
ternal vertices represent their ancestors, and edges represent the genetic relationships
between them. Such a tree is called a “phylogenetic tree” (or a “phylogeny”). In this
paper, we study the problem of reconstructing phylogenies for a set of taxa (taxonomic
units) with a character-based cladistics approach1.

In character-based cladistics, each taxonomic unit is described with a set of “(quali-
tative) characters” – traits that every taxonomic unit can instantiate in a variety of ways.
The taxonomic units that instantiate the character in the same way are assigned the same
“state” of that character. Here is an example from [31]. Consider the languages English,
German, French, Spanish, Italian, and Russian. A character for these languages is the
basic meaning of ‘hand’:

English German French Spanish Italian Russian
hand Hand main mano mano ruká

1 See [12] for a survey on the other methods for phylogeny reconstruction.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 Daniel R. Brooks et al.

Since the English and German words descended from the same word in their parent
language, namely Proto-Germanic *handuz, by direct linguistic inheritance, those lan-
guages must be assigned the same state for this character. The three Romance languages
must likewise be assigned a second state (since their words are all descendants of Latin
manus) and Russian must be assigned a third:

English German French Spanish Italian Russian
1 1 2 2 2 3

In character-based cladistics, after describing each taxonomic unit with a set of
characters, and determining the character states, the phylogenies are reconstructed by
analyzing the character states. There are two main approaches: one is based on the
“maximum parsimony” criterion [7], and the other is based on the “maximum com-
patibility” criterion [3]. According to the former, the goal is to infer a phylogeny with
the minimum number of character state changes along the edges. With the latter ap-
proach, the goal is to reconstruct a phylogeny with the maximum number of “compati-
ble” characters. Both problems are NP-hard [14, 5]. In this paper we present a method
for reconstructing a phylogenetic tree for a set of taxa, with the latter approach.

Our method is based on the programming methodology called answer set program-
ming (ASP) [26, 33, 21]. It provides a declarative representation of the problem as a
logic program whose answer sets [15, 16] correspond to solutions. The answer sets for
the given formalism can be computed by special systems called answer set solvers. For
instance, CMODELS [20] is one of the answer set solvers that are currently available.

We apply our method of reconstructing phylogenies using ASP to historical analysis
of languages, and to historical analysis of parasite-host systems.

Histories of individual languages give us information from which we can infer prin-
ciples of language change. This information is not only of interest to historical linguists
but also of interest to archaeologists, human geneticists, physical anthropologists as
well. For instance, an accurate reconstruction of the evolutionary history of certain lan-
guages can help us answer questions about human migrations, the time that certain
artifacts were developed, when ancient people began to use horses in agriculture [24,
25, 32, 35].

Historical analysis of parasites gives us information on where they come from and
when they first started infecting their hosts. The phylogenies of parasites, with the phy-
logenies of their hosts, and with the geographical distribution of their hosts, can be used
to understand the changing dietary habits of a host species, to understand the structure
and the history of ecosystems, and to identify the history of animal and human diseases.
This information allows predictions about the age and duration of specific groups of
animals of a particular region or period, identification of regions of evolutionary “hot
spots” [2], and thus can be useful to make more reliable predictions about the impacts
of perturbations (natural or caused by humans) on ecosystem structure and stability [1].

With this method, using the answer set solver CMODELS, we have computed 33
phylogenetic trees for 7 Chinese dialects based on 15 lexical characters, and 45 phylo-
genetic trees for 24 Indo-European languages based on 248 lexical, 22 phonological and
12 morphological characters. Some of these phylogenies are plausible from the point
of view of historical linguistics. We have also computed 21 phylogenetic trees for 9

Character-Based Cladistics and Answer Set Programming 39

species of Alcataenia (a tapeworm genus) based on their 15 morphological characters,
some of which are plausible from the point of view of coevolution – the evolution of
two or more interdependent species each adapting to changes in the other, and from the
point of view of historical biogeography – the study of the geographic distribution of
organisms.

We have also computed most parsimonious trees for these three sets of taxa, us-
ing PARS (available with PHYLIP [13]). Considering also the most parsimonious trees
published in [30] (for Indo-European languages), [27] (for Chinese dialects), and [18,
19] (for Alcataenia species), we have observed that some of the plausible trees we have
computed using the compatibility criterion are different from the most parsimonious
ones. This shows that the availability of our computational method based on maximum
compatibility can be useful for generating conjectures that can not be found by other
computational tools based on maximum parsimony.

As for related work, one available software system that can compute phylogenies for
a set of taxa based on the maximum compatibility criterion is CLIQUE (available with
PHYLIP), which is applicable only to sets of taxa where a taxonomic unit is mapped
to state 0 or state 1 for each character. This prevents us from using CLIQUE to recon-
struct phylogenies for the three sets of taxa mentioned above since, in each set, there is
some taxonomic unit mapped to state 2 for some character. Another system is the Per-
fect Phylogeny software of [31], which can compute a phylogeny with the maximum
number of compatible characters only when all characters are compatible. Otherwise,
it computes an approximate solution. In this sense, our method is more general than the
existing ones that compute trees based on maximum compatibility.

Another advantage of our method over the existing ones mentioned above is that
we can easily include in the program domain specific information (e.g. temporal and
geographical constraints) and thus prevent the reconstruction of some trees that are not
plausible.

We consider reconstruction of phylogenies as the first step of reconstructing the
evolutionary history of a set of taxa. The idea is then to reconstruct (temporal) phylo-
genetic networks, which also explain the contacts (or borrowings) between taxonomic
units, from the reconstructed phylogenies. The second step is studied in [29, 9, 10].

For more information on the semantics of the ASP constructs used in the logic
program below, and on the methodology of ASP, the reader is referred to [22].

2 Problem Description

A phylogenetic tree (or phylogeny) for a set of taxa is a finite rooted binary tree 〈V, E〉
along with two finite sets I and S and a function f from L× I to S, where L is the set
of leaves of the tree. The set L represents the given taxonomic units whereas the set V
describes their ancestral units and the set E describes the genetic relationships between
them. The elements of I are usually positive integers (“indices”) that represent, intu-
itively, qualitative characters, and elements of S are possible states of these characters.
The function f “labels” every leaf v by mapping every index i to the state f(v, i) of the
corresponding character in that taxonomic unit.

For instance, Fig. 1 is a phylogeny with I = {1, 2} and S = {0, 1}; f(v, i) is
represented by the i-th member of the tuple labeling the leaf v.

40 Daniel R. Brooks et al.

CA B D

R

F
E

0 1 1 10 1 1 1

Fig. 1. A phylogeny for the languages A, B, C, D.

A character i ∈ I is compatible with a phylogeny (V, E, L, I, S, f) if there exists a
function g : V × {i}
→ S such that

(i) for every leaf v of the phylogeny, g(v, i) = f(v, i);
(ii) for every s ∈ S, if the set

Vis = {x ∈ V : g(x, i) = s}

is nonempty then the digraph 〈V, E〉 has a subgraph with the set Vis of vertices
that is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with that phylogeny.
For instance, Character 2 is compatible with the phylogeny of Fig. 1, but Character 1 is
incompatible.

The computational problem we are interested in is, given the sets L, I , S, and the
function f , to build a phylogeny (V, E, L, I, S, f) with the maximum number of com-
patible characters. This problem is called the maximum compatibility problem. It is
NP-hard even when the characters are binary [5].

To solve the maximum compatibility problem, we consider the following problem:
given sets L, I , S, a function f from L × I to S, and a nonnegative integer n, build a
phylogeny (V, E, L, I, S, f) with at most n incompatible characters if one exists.

3 Describing the Problem as a Logic Program

We formalize the problem of phylogeny reconstruction for a set of taxa (as described in
Section 2) as a logic program. The inputs to this problem are

– a set L of leaves 0, . . . , k (k > 0), representing a set of taxa,
– a set I of (qualitative) characters,
– a set S of (character) states,
– a function f mapping every leaf, for every character, to a state, and
– a nonnegative integer n .

The output is a phylogeny (V, E, L, I, S, f) for L with at most n incompatible charac-
ters, if one exists.

The logic program describing the problem has two parts. In the first part, rooted
binary trees whose leaves represent the given taxa are generated. In the second part, the
rooted binary trees according to which there are more than n incompatible characters
are eliminated.

Character-Based Cladistics and Answer Set Programming 41

Part 1. First note that a rooted binary tree 〈V, E〉 with leaves L has 2k + 1 vertices,
since |L| = k+1. Then V is a set of 2k+1 vertices. We identify the vertices in V by the
numbers 0, . . . , 2k. For a canonical representation of a rooted binary tree, i.e., a unique
numbering of the internal vertices in V , we ensure that (1) for every edge (x, y) ∈ E,
x > y, and (2) for any two internal vertices x and y, x > y iff the maximum of the
children of x is greater than the maximum of the children of y. We call such a canonical
representation of a rooted binary tree an ordered binary tree, and describe it as follows.

Suppose that the edges (x, y) of the tree, i.e., elements of E, are described by atoms
of the form edge(x, y). The sets of atoms of the form edge(x, y) are “generated” by the
rule2

2 ≤ {edge(x, y) : y ∈ V, x > y}c ≤ 2 ← (x ∈ V \ L). (1)

Each set describes a digraph where there is an edge from every internal vertex to two
other vertices with smaller numbers, thus satisfying condition (1). Note that, due to the
numbering of the internal vertices above, the in-degree of Vertex 2k is 0. Therefore,
Vertex 2k is the root of the tree.

These generated sets are “tested” with some constraints expressing that the set de-
scribes a tree: (a) the set describes a connected digraph, and (b) the digraph is acyclic.

To describe (a) and (b), we “define” the reachability of a vertex y from vertex x
in 〈V, E〉:

reachable(x, y)← edge(x, y) (x, y ∈ V)
reachable(x, y)← edge(x, z), reachable(z, y) (x, y, z ∈ V). (2)

For (a), we make sure that every vertex is reachable from the root by the constraint

← not reachable(2k, x) (x ∈ V \ {2k}). (3)

For (b), we make sure that no vertex is reachable from itself:

← reachable(x, x) (x ∈ V). (4)

To make sure that condition (2) above is satisfied, we first “define” maxY (x, y)
(“Child y of vertex x is larger than the sister of y”)

maxY (x, y) ← edge(x, y), edge(x, y1) (x, y, y1 ∈ V, y > y1) (5)

and express that a vertex x is larger than another vertex x1 if the maximum child of x
is larger than that of x1:

← maxY (x, y), maxY (x1, y1) (x, x1, y, y1 ∈ V, y > y1, x < x1). (6)

Part 2. We eliminate the rooted binary trees 〈V, E〉, generated by Part 1 above, with
more than n incompatible characters as follows. First we identify, for a rooted binary
tree 〈V, E〉, the characters such that, for some function g : V × I
→ S, condition (i)
holds but condition (ii) does not. Then we eliminate the rooted binary trees for which
the number of such characters is more than n.

2 Rule (1) describes the subsets of the set {edge(x, y) : y ∈ V, x > y} with cardinality 2.

42 Daniel R. Brooks et al.

Take any such function g. According to condition (i), g coincides with f where the
latter is defined:

g(x, i, s)← (x ∈ L, f(x, i) = s). (7)

The internal vertices are labeled by exactly one state for each character by the rule

1 ≤ {g(x, i, s) : s ∈ S}c ≤ 1 ← (x ∈ V \ L, i ∈ I). (8)

To identify the characters for which condition (ii) does not hold, first we pick a root
x for each character i and for each state s such that Vis �= ∅ by the choice rule

{rootis(x, i, s)}c ← g(x, i, s) (x ∈ V, i ∈ I, s ∈ S). (9)

We make sure that exactly one root is picked by the constraints

← rootis(x, i, s), rootis(y, i, s) (x, y ∈ V, x �= y, i ∈ I, s ∈ S) (10)

← {rootis(x, i, s) : x ∈ V } 0, g(y, i, s) (y ∈ V, i ∈ I, s ∈ S), (11)

and that, among the vertices in Vis, this root is the closest to the root of the tree by the
constraint

← rootis(x, i, s), g(y, i, s), reachable(y, x) (x, y ∈ V, i ∈ I, s ∈ S). (12)

After defining the reachability of a vertex in Vis from the root:

reachableis(x, i, s)← rootis(x, i, s) (x ∈ V, i ∈ I, s ∈ S) (13)

reachableis(x, i, s) ← g(x, i, s), reachableis(z, i, s), edge(z, x)
(x, z ∈ V, i ∈ I, s ∈ S) (14)

we identify the characters for which condition (ii) does not hold:

incompatible(i)← g(x, i, s),not reachableis(x, i, s)
(x ∈ V, i ∈ I, s ∈ S). (15)

We make sure that there are at most n incompatible characters by the constraint

← n + 1 ≤ {incompatible(i) : i ∈ I}. (16)

The following theorem shows that the program above correctly describes the maxi-
mum compatibility problem stated as a decision problem.

Let Π be the program consisting of rules (1)–(16). Let Ek denote the set of all atoms
of the form edge(x, y) such that 0 ≤ y < x ≤ 2k.

Correctness Theorem for the Phylogeny Program. For a given input (L, I, S, f, n),
and for a set E of edges that is a rooted binary tree with the leaves L, E describes a
phylogeny (V, E, L, I, S, f) with at most n incompatible characters iff E can be repre-
sented by the ordered binary tree Z ∩ Ek for some answer set Z for Π . Furthermore,
every rooted binary tree with the leaves L can be represented like this in only one way.

The proof is based on the splitting set theorem and uses the method proposed in [11].
Note that constraints (11) and (12) can be dropped from Π , if the goal is to find the

minimum n such that Π has an answer set. In our experiments, we drop constraint (11)
for a faster computation.

Character-Based Cladistics and Answer Set Programming 43

4 Useful Heuristics

We can use the answer set solver CMODELS with the phylogeny program described
above to solve small instances of the maximum compatibility problem. Larger data
sets, like the Indo-European dataset (Section 7), require the use of some heuristics.

Sometimes the problem for a given input (L, I, S, f, n) can be simplified by making
the set I of characters smaller. In particular, we can identify the characters that would
be compatible with any phylogeny constructed for the given taxa. For instance, if every
taxonomic unit is mapped to a different state at the same character, i.e., the character
does not have any “essential” state3, then we do not need to consider this character in
the computation. Similarly, if every taxonomic unit is mapped to the same state at the
same character then the character has only one essential state, and that character can be
eliminated. Therefore, we can consider just the characters with at least 2 essential states.
Such a character will be called informative since it is incompatible for some phylogeny.
For instance, for the Indo-European languages, out of 275 characters, we have found
out that 21 are informative.

Due to condition (ii) of Section 2, every nonempty Vis forms a tree in 〈V, E〉. In
each such tree, for every pair of sisters x and y, such that x, y ∈ Vis, x and y are
labeled for character i in the same way as their parent is labeled. Therefore, to make the
computation more efficient, while labeling the internal vertices of the rooted binary tree
in Part 2, we can propagate common labels up. For instance, for the Alcataenia species,
this heuristic improves the computation time by a factor of 2.

In fact, as described in [9, Section 5], we can use partial labelings of vertices, con-
sidering essential states, instead of a total one. For instance, for the Indo-European
languages, this heuristic improves the computation time by a factor of 3.

Due to the definition of a (partial) perfect network in [9], a character i is compati-
ble with respect to a phylogeny (V, E, L, I, S, f) iff there is a partial mapping g from
V × {i} to S such that (V, E, ∅, g) is a partial perfect network built on the phylogeny
(V, E, L, {i}, S, f |L×{i}). Then, Propositions 4 and 5 from [9] ensure that no solution
is lost when the heuristics above are used in the reconstruction of a phylogeny with the
maximum number of compatible characters.

5 Computation and Evaluation of Phylogenetic Trees

We have applied the computational method described above to three sets of taxa: Chi-
nese dialects, Indo-European languages, and Alcataenia (a tapeworm genus) species.
Our experiments with these taxa are described in the following three sections.

To compute phylogenies, we have used the answer set solver CMODELS with the
programs describing a set of taxa, preprocessing of the taxa, and reconstruction of a
phylogeny. Since the union of these programs are “tight” on their models of comple-
tion [8], CMODELS transforms them into a propositional theory [23], and calls a SAT
solver to compute the models of this theory, which are identical to the answer sets for
the given programs [20]. In our experiments, we have used CMODELS (Version 2.10)

3 Let (V, E, L, I, S, f) be a phylogeny, with f : L × I �→ S. A state s ∈ S is essential
with respect to a character j ∈ I if there exist two different leaves l1 and l2 in L such that
f(l1, j) = f(l2, j) = s.

44 Daniel R. Brooks et al.

Character Xiang Gan Wu Mandarin Hakka Min Yue
‘feather’ 1 2 2 1 2 1 2

‘give’ 1 1 2 3 4 5 2
‘grease’ 1 2 1 3 2 2 2
‘know’ 1 1 1 2 2 2 2
‘say’ 1 3 2 2 1 1 1

Fig. 2. The character states of some informative characters for seven Chinese dialects.

with the SAT solver ZCHAFF (Version Z2003.11.04) [28], on a PC with a 733 MHz Intel
Pentium III processor and 256MB RAM, running SuSE Linux (Version 8.1).

In the following, we present the computed trees in the Newick format, where the
sister subtrees are enclosed by parentheses. For instance, the tree of Fig. 1 can be rep-
resented in the Newick format as ((A, B), (C, D)).

We compare the computed phylogenetic trees with respect to three criteria. First, we
identify the phylogenies that are plausible. For the Chinese dialects and Indo-European
languages, the plausibility of phylogenies depends on the linguistics and archaeological
evidence; for Alcataenia, the plausibility of the phylogeny we compute is dependent
on the knowledge of host phylogeny (e.g. phylogeny of the seabird family Alcidae),
chronology of the fossil record, and biogeographical evidence. Since our method is
based on maximum compatibility, the second criterion is the number of incompatible
characters: the more the number of compatible characters the better the trees are. As
pointed out earlier in Section 1, we view reconstructing phylogenies as the first step
of reconstructing the evolutionary history of a set of taxonomic units. The second step
is then, to obtain a perfect (temporal) phylogenetic network from the reconstructed
phylogeny by adding some lateral edges, in the sense of [29, 9, 10]. Therefore, the third
criteria is the minimum number of lateral edges (denoting contacts such as borrowings)
required to turn the phylogeny into a phylogenetic network.

We also compare these trees to the ones computed by a maximum parsimony method.
Usually, to compare a set of trees with another set, “consensus trees” are used. A con-
sensus tree “summarizes” a set of trees by retaining components that occur sufficiently
often. We have used the program CONSENSE, available with PHYLIP [13], to find con-
sensus trees.

6 Computing Phylogenetic Trees for Chinese Dialects

We have applied the computational method described above to reconstruct a phylogeny
for the Chinese dialects Xiang, Gan, Wu, Mandarin, Hakka, Min, and Yue. We have
used the dataset, originally gathered by Xu Tongqiang and processed by Wang Feng,
described in [27]. In this dataset, there are 15 lexical characters, and they are all infor-
mative. Each character has 2–5 states. For some characters, their states are presented
in Fig. 2. After the inessential states are eliminated as explained in Section 4, each
character has 2 essential states.

With this dataset, we have computed 33 phylogenies with 6 incompatible characters
and found out that there is no phylogeny with less than 6 incompatible characters, in less
than an hour. The sub-grouping of the Chinese dialects is not yet established. However,

Character-Based Cladistics and Answer Set Programming 45

Phylogenies m

15 ((Hakka, Min), (Yue, (Gan, (Xiang, (Wu, Mandarin))))) 2
18 ((Yue, (Hakka, Min)), (Mandarin, (Wu, (Xiang, Gan)))) 3
23 ((Hakka, Min), (Yue, ((Xiang, Gan), (Wu, Mandarin)))) 3
24 ((Yue, (Hakka, Min)), (Gan, (Xiang, (Wu, Mandarin)))) 2
27 ((Hakka, Min), (Yue, (Mandarin, (Wu, (Xiang, Gan))))) 3

Fig. 3. Phylogenies computed for Chinese dialects, using CMODELS, that are plausible from the
point of view of historical linguistics. Each of these trees has 6 incompatible characters, and
requires m lateral edges to turn into a perfect phylogenetic network.

Hakka

Mandarin Wu

Xiang

Gan

Yue Min

Fig. 4. A plausible phylogeny for Chinese dialects, constructed by CMODELS.

many specialists agree that there are a Northern group and a Southern group. That is,
for the dialects we chose in our study, we would expect a (Wu, Mandarin, Gan, Xiang)
Northern grouping and a (Hakka, Min) Southern grouping. (It is not clear which group
Yue belongs to.) Out of the 33 trees, 5 are more plausible with respect to this hypoth-
esis. One of these plausible trees, Phylogeny 15, is presented in Fig. 4. Among these
5 plausible phylogenies, 2 require at least 2 lateral edges (representing borrowings) to
turn into a perfect phylogenetic network; the others require at least 3 edges.

With the dataset above, we have constructed 5 most parsimonious phylogenies using
the phylogeny reconstruction program PARS, and observed that none of these phyloge-
nies is consistent with the hypothesis about the grouping of Northern and Southern
Chinese dialects.

Using the program CONSENSE, we have computed the majority-consensus tree for
our 33 phylogenies: ((Yue, (Hakka, Min)), ((Gan, Xiang), (Wu, Mandarin))). Both this
tree and the majority-consensus tree for the 55 most parsimonious trees of [27] are con-
sistent with the more conventional hypothesis above, grouping Yue with the Southern
dialects.

All of the 33 phylogenies we have computed correspond to the trees of Types I–III
in [27]. Each of the remaining 22 trees of [27] has 7 incompatible characters, but they
have the same degree of parsimony as the other 33 trees. This highlights the difference
between a maximum parsimony method and a maximum compatibility method.

7 Computing Phylogenetic Trees for Indo-European Languages

We have applied the computational method described above to reconstruct a phylogeny
for the Indo-European languages Hittite, Luvian, Lycian, Tocharian A, Tocharian B,
Vedic, Avestan, Old Persian, Classical Armenian, Ancient Greek, Latin, Oscan, Um-

46 Daniel R. Brooks et al.

Character Ancient Greek Old Church Old English Old High Latin Old Persian
Slavonic German

‘child’ 3 8 10 18 12 15
‘father’ 2 1 2 2 2 2
‘free’ 3 8 10 10 3 14

‘laugh’ 2 7 9 9 11 14
‘tear’ 2 4 2 2 2 7

Fig. 5. The character states of some informative characters for six Indo-European languages.

brian, Gothic, Old Norse, Old English, Old High German, Old Irish, Welsh, Old Church
Slavonic, Old Prussian, Lithuanian, Latvian, and Albanian. We have used the dataset as-
sembled by Don Ringe and Ann Taylor, with the advice of other specialist colleagues.
This dataset is described in [31].

There are 282 informative characters in this dataset. Out of 282 characters, 22 are
phonological characters encoding regular sound changes that have occurred in the pre-
history of various languages, 12 are morphological characters encoding details of in-
flection (or, in one case, word formation), and 248 are lexical characters defined by
meanings on a basic word list. For each character, there are 2–24 states. Some of the
character states for some Indo-European languages are shown in Fig. 5.

To compute phylogenetic trees, we have treated as units the language groups Balto-
Slavic (Lithuanian, Latvian, Old Prussian, Old Church Slavonic), Italo-Celtic (Oscan,
Umbrian, Latin, Old Irish, Welsh), Greco-Armenian (Ancient Greek, Classical Arme-
nian), Anatolian (Hittite, Luvian, Lycian), Tocharian (Tocharian A, Tocharian B), Indo-
Iranian (Old Persian, Avestan, Vedic), Germanic (Old English, Old High German, Old
Norse, Gothic), and the language Albanian.

For each language group, we have obtained the character states by propagating the
character states for languages up, similar to the preprocessing of [9]. After propagating
character states up, we have found out that grouping Baltic and Slavic makes 1 charac-
ter incompatible, and grouping Italic and Celtic makes 6 characters incompatible. (For
the purposes of this experiment we accept the Italo-Celtic subgroup as found in [31]
largely on the basis of phonological and morphological characters.) Other groupings
do not make any character incompatible. Therefore, we have not considered these 7
characters while computing a phylogenetic tree, as we already know that they would be
incompatible with every phylogeny.

Then we have identified the characters that would be compatible with every phy-
logeny built for these 7 language groups and the language Albanian. By eliminating
such characters as explained in Section 4, we have found out that, out of 282− 7 char-
acters, 21 characters are informative. Out of those 21, 2 are phonological (‘P2’ and
‘P3’) and 1 is morphological (‘M5’). Each character has 2–3 essential states.

While computing phylogenetic trees for the 7 language groups and the language
Albanian, we have ensured that each tree satisfies the following domain-specific con-
straints: Anatolian is the outgroup for all the other subgroups; within the residue,
Tocharian is the outgroup; within the residue of that, Italo-Celtic, and possibly Alba-
nian are outgroups, but not necessarily as a single clade; Albanian cannot be a sister of
Indo-Iranian or Balto-Slavic.

Character-Based Cladistics and Answer Set Programming 47

proto−
proto−

proto−

proto−
proto−

proto− proto−

Germanic

Italo−Celtic

Tocharian

Anatolian

Albanian

Greco−Armenian

Balto−Slavic

Indo−Iranian

Fig. 6. A plausible phylogeny computed for Indo-European languages, using CMODELS.

The domain-specific information above can be formalized as constraints. For in-
stance, we can express that Anatolian is the outgroup for all the other subgroups by the
constraint

← not edge(2k, 6)

where 2k is the root of the phylogeny, and 6 denotes proto-Anatolian.
Another piece of domain-specific information is about the phonological and mor-

phological characters. The phonological and morphological innovations (except ‘P2’
and ‘P3’) considered in the dataset are too unlikely to have spread from language to
language, and that independent parallel innovation is practically excluded. Therefore,
while computing phylogenetic trees, we have ensured that these characters are compat-
ible with them. This is achieved by adding to the program the constraint

← incompatible(i) (i ∈ IC ∩MP)

where MP is the set of all morphological and phonological characters except ‘P2’
and ‘P3’.

With 21 informative characters, each with 2–3 essential states, we have computed
45 phylogenetic trees for the 7 language groups above and the language Albanian, in
a few minutes. Out of the 45 phylogenies computed using CMODELS, 34 are identified
by Don Ringe as plausible from the point of view of historical linguistics. Fig. 6 shows
the most plausible one with 16 incompatible characters. This phylogeny is identical to
the phylogeny presented in [31], which was computed with a greedy heuristic using the
Perfect Phylogeny software in about 8 days (Don Ringe, personal communication), and
used in [29, 9, 10] to build a perfect phylogenetic network for Indo-European.

With the same Indo-European dataset obtained after preprocessing (with 21 infor-
mative characters, each with 2–3 essential states), we have also computed a most parsi-
monious phylogeny using the computational tool PARS: (Anatolian, Tocharian, (Greco-
Armenian, ((Albanian, ((Italo-Celtic, Germanic), Balto-Slavic)), Indo-Iranian))). Some
other most parsimonious phylogenies constructed for Indo-European languages are due
to [30], where the authors use PAUP [34] with the dataset Isidore Dyen [6] to generate

48 Daniel R. Brooks et al.

Character A. Longicervica A. Cerorhincae A. Pygmaeus A. Meinertzhageni A. Campylacantha
uterus 1 1 1 1 1
size of
hooks 1 0 1 2 2

position
in host 1 0 1 1 0

position
of hooks 1 0 0 2 1

Fig. 7. The character states of some characters for five Alcataenia species.

phylogenies. None of these most parsimonious trees is consistent with the domain-
specific information described above, and thus none is plausible from the point of view
of historical linguistics. On the other hand, we should note that Dyen’s dataset is not
very reliable since it is a purely lexical database from modern languages.

8 Computing Phylogenetic Trees for Alcataenia Species

With the computational method presented above, we can also infer phylogenies for
some species, based on some morphological features. Here we have considered 9 species
of Alcataenia – a tapeworm genus whose species live in alcid birds (puffins and their rel-
atives): A. Larina (LA), A. Fraterculae (FR), A. Atlantiensis (AT), A. Cerorhincae (CE),
A. Pygmaeus (PY), A. Armillaris (AR), A. Longicervica (LO), A. Meinertzhageni (ME),
A. Campylacantha (CA). We have used the dataset described in [19].

In this dataset, there are 15 characters, each with 2–3 states. For some characters,
their states are presented in Fig. 7. After preprocessing, we are left with 10 informative
characters, each with 2 essential states.

According to [19], the outgroup for all Alcataenia species is A. Larina. We have
expressed this domain-specific information by the constraint

← not edge(2k, 0)

where 2k is the root of the phylogeny, and 0 denotes A. Larina.
With the dataset obtained after preprocessing, we have found out that, for Alcatae-

nia, there is no phylogeny with less than 5 incompatible characters. Then we have com-
puted 18 phylogenies, with 5 incompatible characters, for Alcataenia, in less than 30
minutes. One of these phylogenies is presented in Fig. 8.

For the plausibility of the phylogenies for Alcataenia, we consider the phyloge-
nies of its host Alcidae (a seabird family) and the geographical distributions of Alcidae.
This information is summarized in Table 3 of [19]. For instance, according to host and
geographic distributions over the time, diversification of Alcataenia is associated with
sequential colonization of puffins (parasitized by A. Fraterculae and A. Cerorhincae),
razorbills (parasitized by A. Atlantiensis), auklets (parasitized by A. Pygmaeus), and
murres (parasitized by A. Armillaris, A. Longicervica, and A. Meinertzhageni). This
pattern of sequential colonization is supported by the phylogeny of Alcidae in [4]. Out
of the 18 trees we have computed, only two are consistent with this pattern. (One of

Character-Based Cladistics and Answer Set Programming 49

LO AR PY AT CE FR LACA ME

Fig. 8. A plausible phylogeny computed, using CMODELS, for Alcataenia species.

them is shown in Fig. 8.) Both trees are plausible also from the point of view of his-
torical biogeography of Alcataenia in Alcidae, summarized in [19]. Each plausible tree
needs 3 lateral edges to turn into a perfect phylogenetic network.

With the Alcataenia dataset described above, we have computed a most parsimo-
nious tree using PARS, which is very similar to the phylogeny of Fig. 8, and to the
most parsimonious phylogeny computed for the Alcataenia species above (except A. At-
lantiensis) by Eric Hoberg [18][Fig. 1].

According to [18, 19], a more plausible phylogeny for Alcataenia is the variation
of the phylogeny of Fig. 8 where A. Armillaris and A. Longicervica are sisters. We can
express that A. Armillaris and A. Longicervica are sisters by the constraint

← not sister(2, 4)

where 2 and 4 denote A. Armillaris and A. Longicervica respectively. By adding this
constraint to the problem description, we have computed 3 phylogenies, each with 6
incompatible characters, in less than 10 minutes; their strict consensus tree is identical
to the one presented in Fig. 5 of [19]. It is not the most parsimonious tree.

9 Conclusion

We have described how to use answer set programming to generate conjectures about
the phylogenies of a set of taxa based on the compatibility of characters. Using this
method with the answer set solver CMODELS, we have computed phylogenies for 7
Chinese dialects, and for 24 Indo-European languages. Some of these trees are plausible
from the point of view of historical linguistics. We have also computed phylogenies for
9 Alcataenia species, and identified some as more plausible from the point of view of
coevolution and historical biogeography.

Some of the plausible phylogenies we have computed (e.g. the ones computed for
Indo-European) using CMODELS are different from the ones computed using other soft-
ware, like PARS of PHYLIP, based on maximum parsimony. This shows that the avail-
ability of our computational method based on maximum compatibility can be useful for
generating conjectures that can not be found by other computational tools.

One software that can compute phylogenies for a set of taxa based on the maximum
compatibility criterion is CLIQUE (available with PHYLIP), which is applicable only to
sets of taxa where a taxonomic unit is mapped to state 0 or state 1 for each character.

50 Daniel R. Brooks et al.

Another one is the Perfect Phylogeny software of [31], which can compute a phylogeny
with the maximum number of compatible characters only when all characters are com-
patible. Our method is applicable to sets of taxa (like the ones we have experimented
with) where a taxonomic unit can be mapped to multiple states. Also, it guarantees to
find a tree with the maximum number of compatible characters, if one exists, when all
characters may not be compatible. In this sense, our method is more general than the
existing ones that compute trees based on maximum compatibility.

Another advantage of our method over the existing ones mentioned above is due to
answer set programming. Its declarative representation formalism allows us to easily
include in the program domain specific information, and thus to prevent the reconstruc-
tion of some phylogenetic trees that are not plausible. Moreover, well-studied properties
of programs in this formalism allow us to easily prove that the maximum compatibility
problem is correctly described as a decision problem by the phylogeny program.

Acknowledgments

We have had useful discussions with Selim Erdog̃an and Vladimir Lifschitz on the
formalization of the problem, and with Wang Feng on the plausibility of phylogenies for
Chinese dialects. Eric Hoberg, Luay Nakhleh, William Wang, and Tandy Warnow have
supplied relevant references. Brooks was supported by an NSERC Discovery Grant
to DRB. Ringe was supported by NSF BCS 03-12911. Erdem was supported in part
by FWF P16536-N04; part of this work was done while she visited the University of
Toronto, which was made possible by Hector Levesque and Ray Reiter.

References

1. D. R. Brooks, R. L. Mayden, and D. A. McLennan. Phylogeny and biodiversity: Conserving
our evolutionary legacy. Trends in Ecology and Evolution, 7:55–59, 1992.

2. D. R. Brooks and D. A. McLennan. Phylogeny, Ecology, and Behavior: A Research Program
in Comparative Biology. Univ. Chicago Press, 1991.

3. J. H. Camin and R. R. Sokal. A method for deducing branching sequences in phylogeny.
Evolution, 19:311–326, 1965.

4. R. M. Chandler. Phylogenetic analysis of the alcids. PhD thesis, University of Kansas, 1990.
5. W. H. E. Day and D. Sankoff. Computational complexity of inferring phylogenies by com-

patibility. Systematic Zoology, 35(2):224–229, 1986.
6. I. Dyen, J. B. Kruskal, and P. Black. An Indoeuropean classification: a lexicostatistical

experiment. Transactions of the American Philosophical Society, 82:1–132, 1992.
7. A. W. F. Edwards and L. L. Cavalli-Sforza. Reconstruction of evolutionary trees. Phenetic

and Phylogenetic Classification, pp. 67–76, 1964.
8. E. Erdem and V. Lifschitz. Tight logic programs. TPLP, 3(4–5):499–518, 2003.
9. E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe. Reconstructing the evolutionary history

of Indo-European languages using answer set programming. In Proc. of PADL, pp. 160–176,
2003.

10. E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic networks and answer set pro-
gramming. In progress, 2004.

11. S. T. Erdoğan and V. Lifschitz. Definitions in answer set programming. In Proc. of LPNMR,
pp. 114–126, 2004.

Character-Based Cladistics and Answer Set Programming 51

12. J. Felsenstein. Numerical methods for inferring evolutionary trees. The Quarterly Review of
Biology, 57:379–404, 1982.

13. J. Felsenstein. PHYLIP (Phylogeny inference package) version 3.6.
14. L. R. Foulds and R. L. Graham. The Steiner tree problem in Phylogeny is NP-complete.

Advanced Applied Mathematics, 3:43–49, 1982.
15. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proc. of ICLP/SLP, pp. 1070–1080, 1988.
16. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

New Generation Computing, 9:365–385, 1991.
17. W. Hennig. Grundzuege einer Theorie der Phylogenetischen Systematik. Deutscher Zen-

tralverlag, 1950.
18. E. P. Hoberg. Evolution and historical biogeography of a parasite-host assemblage: Alcatae-

nia spp. (Cyclophyllidea: Dilepididae) in Alcidae (Chradriiformes). Canadian Journal of
Zoology, 64:2576–2589, 1986.

19. E. P. Hoberg. Congruent and synchronic patterns in biogeography and speciation among
seabirds, pinnipeds, ans cestodes. J. Parasitology, 78(4):601–615, 1992.

20. Yu. Lierler and M. Maratea. Cmodels-2: SAT-based answer sets solver enhanced to non-tight
programs. In Proc. of LPNMR, pp. 346–350, 2004.

21. V. Lifschitz. Answer set programming and plan generation. AIJ, 138:39–54, 2002.
22. V. Lifschitz. Introduction to answer set programming. Unpublished draft, 2004.
23. J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.
24. V.H. Mair, editor. The Bronze Age and Early Iron Age Peoples of Eastern Central Asia.

Institute for the Study of Man, Washington, 1998.
25. J.P. Mallory. In Search of the Indo-Europeans. Thames and Hudson, London, 1989.
26. V. Marek and M. Truszczyński. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398, 1999.
27. J. W. Minett and W. S.-Y. Wang. On detecting borrowing: distance-based and character-based

approaches. Diachronica, 20(2):289–330, 2003.
28. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proc. of DAC, 2001.
29. L. Nakhleh, D. Ringe, and T. Warnow. Perfect phylogenetic networks: A new methodology

for reconstructing the evolutionary history of natural languages. Language, 2005. To appear.
30. K. Rexova, D. Frynta, and J. Zrzavý. Cladistic analysis of languages: Indo-European classi-

fication based on lexicostatistical data. Cladistics, 19:120–127, 2003.
31. D. Ringe, T. Warnow, and A. Taylor. Indo-European and computational cladistics. Transac-

tions of the Philological Society, 100(1):59–129, 2002.
32. R.G. Roberts, R. Jones, and M.A. Smith. Thermoluminescence dating of a 50,000-year-old

human occupation site in Northern Australia. Science, 345:153–156, 1990.
33. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-

mantics. AIJ, 138:181–234, 2002.
34. D.L. Swofford. PAUP* (Phylogenetic analysis under parsimony) version 4.0.
35. J.P. White and J.F. O’Connell. A Prehistory of Australia, New Guinea, and Sahul. Academic

Press, New York, 1982.

Role-Based Declarative Synchronization
for Reconfigurable Systems�

Vlad Tanasescu and Pawe�l T. Wojciechowski

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{Vlad.Tanasescu,Pawel.Wojciechowski}@epfl.ch

Abstract. In this paper we address the problem of encoding complex
concurrency control in reconfigurable systems. Such systems can be often
reconfigured, either statically, or dynamically, in order to adapt to new
requirements and a changing environment. We therefore take a declara-
tive approach and introduce a set of high-level programming abstractions
which allow the programmer to easily express complex synchronization
constraints in multithreaded programs. The constructs are based on our
model of role-based synchronization (RBS) which assumes attaching roles
to concurrent threads and expressing a synchronization policy between
the roles. The model is illustrated by describing an experimental imple-
mentation of our language as a design pattern library in OCaml. Finally,
we also sketch a small application of a web access server that we have
implemented using the RBS design pattern.

1 Introduction

Our motivating example of reconfigurable systems are networked applications,
such as modular group communication middleware protocols [7, 14] and web
services [27]. Software components in these applications interact with clients
and process network messages. Due to efficiency reasons, different components
(or objects) may be accessed concurrently, with possible dependencies on other
components. To provide data consistency and a quality of service, complex syn-
chronization policies of object accesses are required. Unfortunately, a given com-
position of application components may often change in order to adapt to a new
environment or changing user requirements. This means that the synchroniza-
tion policy may need to be revised as well, and the corresponding code changed
accordingly, making programming of such systems a difficult task.

Developing multithreaded systems is considerably more difficult than imple-
menting sequential programs due to several reasons:

– traditional concurrency constructs, such as monitors and conditional vari-
ables, are used to express synchronization constraints at the very low level
of individual accesses to shared objects (thread safety);

� Research supported by the Swiss National Science Foundation under grant number
21-67715.02 and Hasler Stiftung under grant number DICS-1825.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Role-Based Declarative Synchronization for Reconfigurable Systems 53

– embedding the implementation of a synchronization policy in the main code
compromises both a good understanding of the application logic, i.e. we are
not sure from the first look what the application code does, and also an
understanding of the policy expressed;

– the notions of thread roles such as producer or consumer, which are essential
for the understanding of a given policy, tend to disappear beyond an accu-
mulation of lines of code, just as the logical essence of a sequential program
gets lost when expressed in, say, an assembly language;

– synchronization constructs are usually entangled with instructions of the
main program, which means that the correctness of concurrent behaviour is
bound to the correctness of the entire application; this feature complicates
maintenance and code reuse – some of the most advocated reasons for using
components.

We therefore study declarative synchronization, which assumes a separation
of an object’s functional behaviour and the synchronization constraints imposed
on it. Such an approach enables to modify and customize synchronization policies
constraining the execution of concurrent components, without changing the code
of component objects, thus making programming easier and less error-prone.

While some work on such separation of concerns exists (see [8, 5, 23, 22, 16]
among others) and example languages have been built (see [21, 22, 15, 16]), as
far as we know, our solution is novel. It shares a number of design features
with these languages, such as support for “declarative style” and “separation of
synchronization aspects”. However, there are also important differences in the
model and implementation (we characterize them briefly in §2). Some of our
motivations and goals are different, too.

In this paper, we propose a role-based synchronization (RBS) model with a
constraint language to express concurrency control between the roles. Our design
has been guided by two main requirements:

– to keep the semantics of synchronization control attached to roles involved
in the specification of a concurrent problem rather than to instances of com-
ponents and objects (or their abstractions);

– to allow expressing concurrent strategies independently from the main code
of applications, with a possibility to switch between different strategies on-
the-fly (with some control on the moment of switching).

Our long term goal is to develop support of declarative synchronization for
component-based systems that can be dynamically reconfigured or adapted to
changing requirements or a new environment. For instance, when a mobile device
is moved from outside to inside a building, it may reconfigure its suite of network
protocols on-the-fly. Another example are mobile collaborative systems, such as
the Personal Assistant (PA) application [29]; the PA service components may
need to switch between user interfaces at runtime, depending on a given device
accessed by the user at a time (e.g. a hand-held device or PC workstation).

In our previous work, Wojciechowski [28] has studied typing and verification
of synchronization policies expressed using concurrency combinators – a simple

54 Vlad Tanasescu and Pawe�l T. Wojciechowski

language for declaring constraints between static modules (instead of dynamic
roles). This paper provides an alternative model and new insight into the imple-
mentation aspects of declarative synchronization.

To illustrate our approach, we describe an example RBS design pattern pack-
age that we have implemented in OCaml [17]. Notably, our experimental im-
plementation tackles both aspects of our design (i.e. separation of concerns and
expressiveness) without using any precompilation tools. We believe however that
more traditional programming languages, such as Java [6] and C++ [26], could
be also used.

Our current implementation of RBS can only switch between synchronization
policies that have been predefined by a given RBS package. This is sufficient for
the above example applications of reconfigurable systems. Ultimately, we would
like to be able to download a new policy dynamically. The OCaml distribution
does not support dynamic class loading, however. We intend therefore to ex-
periment with programming languages that support dynamic data types with
dynamic typing and binding, such as Python [20] and Acute [24]. The latter is an
extension of the OCaml language with dynamic loading and controlled rebinding
to local resources. We leave this for future work.

The paper is organized as follows. §2 contains related work, §3 introduces the
RBS model and constraint language, §4 describes an example RBS package, §5
discusses dynamic switching between synchronization policies, §6 illustrates our
approach using a small web application, and §7 concludes.

2 Related Work

There have been recently many proposals of concurrent languages with novel
synchronization primitives, e.g. Polyphonic C# [1] and JoCaml [3] that are based
on the join-pattern abstraction [4], and Concurrent Haskell [10], Concurrent ML
[18], Pict [19] and Nomadic Pict [25, 29], with synchronization constructs based
on channel abstractions. They enable to encode complex concurrency control
more easily than when using standard constructs, such as monitors and locks.

The above work is orthogonal to the goals of this paper. We are primarily
focused on a declarative way of encoding synchronization through separation
of concerns (see [8, 12, 11, 9] among others). The low-level details of the RBS
implementation resemble the idea of aspect-oriented programming. Below we
discuss example work in these two areas.

Separation of Concurrency Aspects. For a long time, the object-oriented
community has been pointing out, under the term inheritance anomaly [13], that
concurrency control code interwoven with the application code of classes, can
represent a serious obstacle to class inheritance, even in very simple situations.

For instance, consider a library class SimpleBuffer implementing a bounded
buffer shared between concurrent producers and consumers. The class provides
public methods input() and output() which can be used to access the buffer. The
implementation of these methods would normally use some conditional variables
like is buffer full or is buffer empty in order to prevent the buffer from being

Role-Based Declarative Synchronization for Reconfigurable Systems 55

accessed when it is full or empty. Suppose we want to implement a buffer in
which we would like to add a condition that nobody can access the buffer after
a call to a method freezeBuffer() has been made. But in this case, we are not
able to simply extend the class SimpleBuffer. We also need to rewrite the code
of both methods output() and input() in order to add the new constraint on the
buffer usage!

Milicia and Sassone [15, 16] address the inheritance anomaly problem and
propose an extension of Java with a linear temporal logic to express synchro-
nization constraints on method calls. Their approach is similar to ours (although
our motivation is the ease of programming and expressiveness). However, it re-
quires a precompilation tool in order to translate a program with temporal logic
clauses into Java source code, while our approach uses the facilities provided by
the host language. Also, their language does not allow for expressing synchro-
nization constraints that require access to a program’s data structures.

Ramirez et al. [21, 22] have earlier proposed a simple constraint logic language
for expressing temporal constraints between “marked points” of concurrent pro-
grams. The approach has been demonstrated using Java, extended with syntax
for marking. Similarly to the approach in [15, 16], the language has however lim-
ited expressiveness. While our constraint declarations can freely access data in a
thread-safe way, and call functions of the application program, their constraints
are not allowed to refer to program variables. Also, composite synchronization
policies (on groups of threads) are not easily expressible.

The previous work, which set up goals similar to our own is also by Ren
and Agha [23] on separation of an object’s functional behaviour and the timing
constraints imposed on it. They proposed an actor-based language for specifying
and enforcing at runtime real-time relations between events in a distributed
system. Their work builds on the earlier work of Frølund and Agha [5] who
developed language support for specifying multi-object coordination, expressed
in the form of constraints that restrict invocation of a group of objects.

In our previous work, Wojciechowski [28] has studied declarative synchro-
nization in the context of a calculus of concurrency combinators. While in this
paper we propose a language for expressing dynamic constraints between role-
oriented threads, the concurrency combinators language is used to declare syn-
chronization constraints between static code fragments. The calculus is therefore
equipped with a static type system that can verify if the matching of a policy
and program is correct. Typable programs are guaranteed to make progress.

Aspect-Oriented Programming. Aspect-Oriented Programming (AOP) is a
new trend in software engineering. The approach is based on separately specify-
ing the various concerns (or aspects) of a program and some description of their
relationship, and then relying on the AOP framework to weave [9] or compose
them together into a coherent program. For instance, error handling or security
checks can be separated from a program’s functional core. Hürsch and Lopes
[8] identify various concerns, including synchronization. Lopes [12] describes a
programming language D, that allows thread synchronization to be expressed as
a separate concern. More recently, AOP tools have been proposed for Java, such

56 Vlad Tanasescu and Pawe�l T. Wojciechowski

as AspectJ [11]. They allow aspects to be encoded using traditional languages
and weaved at the intermediate level of Java bytecode. The programmer writes
aspect code to be executed before and after the execution of pointcuts, where a
pointcut usually corresponds to invocations of an application method.

The code weaving techniques can be, of course, applied to synchronization
aspects too, and by doing so, we can achieve separation of concurrency concerns.
However, by using a pure AOP approach, we are not getting yet more expres-
siveness. In this paper, we propose a set of language abstractions that are used
to declare an arbitrary synchronization policy. The policy is then effectuated
automatically at runtime by a concurrency controller implementing a given RBS
design pattern. Our current implementation of RBS design patterns in OCaml
does not resort to external precompilation tools.

In §3, we describe the RBS model and the constraint language. Then we
explain the implementation details in §4, using an example RBS design pattern.

3 Role-Based Synchronization

In this section, we describe our simple but expressive model of Role-Based Syn-
chronization (RBS). By looking at the classical concurrency problems, such as
Producer-Consumer, Readers-Writers, and Dining Philosophers, we can identify
two essential semantic categories which are used to describe these problems,
i.e. roles and constraints imposed on the roles. Below we characterize these two
categories.

3.1 Thread Roles

Threads in concurrent programs are spawned to perform certain roles, e.g. pro-
ducers, consumers, readers, writers, and philosophers. Below we confuse roles
and threads unless otherwise stated, i.e. a role means one, or possibly many
concurrent threads, that are logically representing the role.

Roles can execute actions, e.g. to output a value in the buffer, to write a value
to a file, to eat rice. Roles can be in different states during program execution.
Some actions are allowed only in certain states, i.e. in order to execute an action
a role must first enter a state that allows the action to be executed, unless the
role is already in such a state.

The common synchronization problems are usually concerned with accessing
shared resources (or objects) by roles in an exclusive manner, e.g. a buffer, a file,
a fork and a rice bowl. We can therefore identify two role states (more refined
states can also be defined): the state of being able to call methods of a shared
object (and execute the corresponding action) and the state of waiting to be
able to do so. We denote by In the former state (where “in” means being in the
position to execute actions) and by Wait the latter state.

For instance, a producer is waiting if the buffer is full, a writer is waiting
when another writer is writing, a philosopher is waiting if at least one fork is
missing. Otherwise, these roles are in the position to execute all role’s actions
which have been defined on the buffer, file, and rice bowl.

Role-Based Declarative Synchronization for Reconfigurable Systems 57

3.2 Synchronization Constraints

Synchronization constraints describe conditions on when roles are allowed to
enter a state and execute the role’s actions allowed by the state.

For instance, a consumer can only input a value if neither producer nor other
consumer is currently accessing the buffer and there is actually some value in
the buffer to be obtained; many concurrent readers can read a file concurrently
if there is no writer writing to the file at the same time; and a philosopher can
eat rice only if two forks are available.

Thus, synchronization constraints specify a synchronization problem – if an
implementation obeys all the constraints defined, then it provides a correct solu-
tion to the problem. Failure to satisfy any constraint in accessing shared objects
by roles may cause incorrect program behaviour. Below we describe two parts
that jointly define a synchronization constraint: a synchronization policy and a
logical condition.

Synchronization Policy. A synchronization policy (or policy in short) defines
a constraint between different roles and their states. We say that a policy is
satisfied if the constraint always holds, and it is violated otherwise. Essentially,
a policy specifies when a role is permitted or forbidden to enter a given state.

A popular policy is “mutual exclusion”, which simply states that some roles
cannot be simultaneously in the critical section defined by access to a shared
object (method, data field, etc.). For instance, a producer and consumer cannot
access a buffer at the same time, two writers are not allowed to simultaneously
write to the file, and two philosophers cannot share the same fork. More precisely,
they are not allowed at any time to be both in the same state In.

Logical Conditions. Satisfying the synchronization policy is the necessary but
often not sufficient condition to solve a synchronization problem. For instance,
a consumer cannot input a value if there is no value in the buffer. Thus, we also
introduce a logical condition which specifies a constraint on an object requested
by a role; this condition must be satisfied in order to allow a method of the
object to be called by the role.

3.3 Constraint Language

The above observations led us to a simple constraint language, defined in Fig. 1.
The language is expressive enough to describe most of the common concurrency
problems. Below we describe the syntactic constructs and example policy types.
We use [x] to denote a list of elements x = x1, ..., xn, where [] is the empty list.

Objects. Shared objects, denoted o, are declared as lists of pairs (a, [S]), where
the meaning of each pair is that the object method a (action a) can be called
(executed) by a role only if the role is in one of the states mentioned in the list
[S] (an empty list [] is used if the method can be called in any state).

For instance, Buffer = [(output, [In]); (is full, [])] declares an object
Buffer which has a method output, which can be called only by a role which is
in state In, and a method is full which can be called in any state.

58 Vlad Tanasescu and Pawe�l T. Wojciechowski

Constraint Language:

Thread roles R ∈ Roles

Objects o ∈ Objects

Actions a ∈ Actions

States S ∈ States

Families F ∈ Families

Constraints K ∈ Constraints

Sync policies P ∈ Policies

Policy types T ∈ Types

Conditions C ∈ o.a → boolean

o ::= [(a, [S]); ...; (a, [S])]

F ::= ([R], [K])

K ::= enter(R,S) = (P, C)

P ::= (T, [(S, [R]); ...; (S, [R])])

T ::= Excluded | Allowed | Required | ...

Example Policy Types:

∃R′ ∈ Ri. R′ in Si for all i = 1..n

(Allowed, [(S1, [R1]); ...; (Sn, [Rn])]) satisfied

∀R′ ∈ Ri. R′ in Si for all i = 1..n

(Required, [(S1, [R1]); ...; (Sn, [Rn])]) satisfied

∀R′ ∈ Ri. R′ not in Si for all i = 1..n

(Excluded, [(S1, [R1]); ...; (Sn, [Rn])]) satisfied

Fig. 1. The Role-Based Synchronization Model

Constraints and Families. We define a constraint on entering a state S by a
role R, written enter(R, S), to be a policy P which regulates switching of the
role to this state, paired with a logical condition C on all objects accessible by
the role in state S. The role R can enter the state S if the policy P is satisfied
and the condition C is true.

Policy P is expressed as a policy type T paired with a list L of policy rules,
i.e. tuples (S, [R]) of a state and a list of roles; the meaning of a policy rule will
be explained below. The condition C has the form of a boolean function with no
arguments which returns true if calling methods by role R will actually make
sense if role R would now enter the state S, and false otherwise. What “makes
sense” or not depends, of course, on the program semantics. Programmers define
function C as part of the main code of the application, and so any variables
visible in the scope of the function can be used to express the condition.

We define a role family, denoted F , to be a list of roles of a single synchroniza-
tion problem, paired with a list of constraints, e.g. Produce-Consumer-Family =

([Producer; Consumer], [enter(Producer, In); enter(Consumer, In)]). Roles
are globally unique.

Policy Types. We have identified two categories of policies: permission and
denial (or refusal). Intuitively, a permission policy describes what must happen
in order to permit a role to enter a state, while a denial policy describes what

Role-Based Declarative Synchronization for Reconfigurable Systems 59

forbids a role to enter a state. Two example permission policy types and one
denial policy type have been defined in the bottom of Figure 1:

Consider a constraint enter(R, S) = (P, C), where P = (T, L). We have the
following policy types T :

– The T = Allowed policy says that role R can enter state S only if for each
tuple (Si, [Ri]) in L, at least one role in Ri is in state Si; the empty list of
roles means any role.

– The T = Required policy says that role R can enter state S only if for each
tuple (Si, [Ri]) in L, all roles Ri are in state Si; the empty list of roles means
all roles.

– The T = Excluded policy says that role R can enter state S only if for each
tuple (Si, [Ri]) in L, all roles in Ri are not in state Si; the empty list of roles
means all roles.

Note that satisfying policy Excluded means that policy Allowed is violated
(and vice versa); similarly we can define the fourth denial policy by negation of
Required.

Example Specifications of Constraints. For instance, consider a Producer-
Consumer problem with the priority of producers. The policy of accessing a
buffer by a consumer is such that the consumer is forbidden to enter a state
that allows the buffer to be accessed, if there is already a producer accessing the
buffer or there are some producers waiting in the queue to access it. Moreover,
a consumer can enter this state only when the buffer is not empty.

We can specify the above constraint using an exclusion policy and a logi-
cal condition, as follows: enter(Consumer, In) = (Excluded, [(In, [Producer]),

(Wait, [Producer])], not (buffer.empty)).
On the other hand, a constraint on entering the state In by producer is:

enter(Producer, In) = (Excluded, [(In, [Consumer])], not (buffer.full)).
The simplicity of this formalism suggests that it can be indeed useful to en-

code synchronization constraints at the level of thread roles, instead of individual
actions executed by the threads. The advantage is that the constraints can be
expressed declaratively, as a set of policy rules. The rules are intuitively easier
to understand than the low-level synchronization code, thus aiding design and
proofs of correctness.

In the next section, we demonstrate how the separation of concerns defined
by our model can be achieved in practice.

4 Example ‘RBS’ Package

We illustrate our approach using an example role-based synchronization package
that we have implemented in the OCaml programming language [17] – an object-
oriented variant of ML. OCaml has abstract types and pattern matching over
types, which allowed us to use the syntax of the constraint language exactly as
it has been defined in §3.3. We think however that the approach described in
this paper can be easily adapted to any object-oriented language.

60 Vlad Tanasescu and Pawe�l T. Wojciechowski

The package Readers-Writers (RW) implements a role family of the Readers-
Writers synchronization problem [2], defined as follows. Two kinds of threads –
readers and writers – share an object. To preclude interference between readers
and writers, a writer must have exclusive access to the object. Assuming no
writer is accessing the object, any number of readers may concurrently access
the object. We assume that writers have priority over readers, i.e. new readers
are delayed if a writer is writing or waiting, and a delayed reader is awakened
only if no writer is waiting. To demonstrate expressiveness of our language, we
have slightly extended the problem by adding a new role Sysadmin that represents
a system administrator. The Sysadmin role is to periodically turn the computer
– i.e., the shared object in our example – off and on for maintenance; turning
the computer off prevents both writers and readers from executing their actions.

The example code below is taken almost verbatim from the source code
in OCaml. However, those readers who are familiar with any object-oriented
language should not find the programs too difficult to understand.

Application Program. Imagine a programmer who wants to use the RW pack-
age to implement an application that requires the Readers-Writers synchroniza-
tion pattern. We assume that the programmer has already defined all application
classes but no synchronization code is provided yet. Below is an example class:

class computer =

object

val mutable screen = 0

val mutable on = true

method read = screen

method write x = screen <- x (* Assign a new value to ’screen’ *)

method is_working = on

method turn = on <- (not on) (* Invert the boolean value ’on’ *)

end

The class implements a “computer object” that will be accessed by concurrent
readers and writers. The class defines methods read and write for accessing the
object’s shared state screen, and methods turn and is working that are used to
turn the computer on/off and check its current status (on/off).

To use the RW synchronization package, the programmer has to create in-
stances of role objects, where each role object (r, w, s) represents a particular
role and “wraps” method calls on objects accessible by the role (in our case it
is the computer object only):

let o = new computer;

let r = new rw_Reader o;

let w = new rw_Writer o;

let s = new rw_Sysadmin o;

Now we just require that concurrent threads (roles) in the application pro-
gram do not access shared objects directly, but via the role objects defined
above. For instance, a thread representing role Reader must read on the (screen
of) computer using a method r.read instead of o.read, similarly for other roles.

Role-Based Declarative Synchronization for Reconfigurable Systems 61

Below is an example code which creates a thread of role Writer that writes in
a loop a random integer (the notation w#write in OCaml corresponds to w.write

in languages like Java and C++, i.e. “call a method write of object w”).

let thread_writer_no1 = Thread.create (fun () ->

while true do

w#write (Random.int 10)

done)

();

The invocation of the method by thread thread writer no1 is guaranteed to
satisfy all the synchronization constraints imposed on this call, i.e. the call will
be suspended (and the thread blocked) if the constraints cannot be satisfied,
and automatically resumed after actions made by other threads will allow the
constraints to be satisfied.

Synchronization Package. Now, let us explain how the RW package has been
implemented. Below are declarations of roles and states:

(* Roles defined in Readers/Writers Package *)

type role = Reader | Writer | Sysadmin

(* States visited by roles *)

type action = Wait | In

Below is a class which implements “wrapping” of the shared object for the role
Writer (the classes and methods have polymorphic types, expressed in OCaml
with a type variable ’a):

class [’a] rw_Writer o =

object

(* Use object ’synchronizer’ to evaluate constraints *)

inherit [’a] rbs Writer synchronizer as sync

method write (x : ’a) : unit =

(* Message sent to synchronizer before the call *)

sync#try_cond ([(Begin, Wait)], [(End, Wait);

(Begin, In)]);

(* Call the actual method (only one here) *)

let result = o#write x in

(* Message sent to synchronizer after the call *)

sync#notify [(End, In)];

(* Return any method result *)

result

end

Essentially, each call of an object method by a role is preceded and followed by a
call to a synchronizer object (which has been bound to a name sync). Note that
this resembles the AOP weaving principle. The synchronizer is the core part of

62 Vlad Tanasescu and Pawe�l T. Wojciechowski

the package – it implements an evaluation engine parameterized over constraint
declarations (which will be explained below).

The effect of calling sync#try cond above is that the engine will evaluate
constraints declared for the role Writer. If all constraints are satisfied then a
thread calling the write method will enter the state In, and the method will be
invoked on the actual object o. Otherwise, the thread enters the state Wait (and
it will be awaken once possible). After the call returns, the thread leaves state
In and enters a default state Idle.

The method sync#try cond takes as arguments two lists of events to be trig-
gered by the role’s threads, respectively at the beginning of a critical section,
and inside the critical section, where an event is a tuple of time delimiters (End
and Begin) and the states defined by a given design pattern (in our example,
these are Wait and In). Triggering events increase and decrease some counter
variables of the package, that are used by the concurrency controller to enforce
user-defined synchronization policies. By using this mechanism, our approach
allows logical conditions in declared policies to be parameterized by the number
of threads that are in a given state (as illustrated in the following example).

Below are synchronization constraints for the Reader and Writer roles pre-
defined by the package. (Of course, the application programmer who uses the
package could always extend this set and express some specialized constraints.)

synchronizer#define_constraint

Reader [{
enter = In;

policy = (Excluded, [(In, [Writer; Sysadmin], []);

(Wait, [Writer], [])]);

check = [(fun () -> computer#is_working)]

}];

synchronizer#define_constraint

Writer [{
enter = In;

policy = (Allowed, [(In, [], [])]);

check = [(fun () -> computer#is_working)]

}];

Each constraint of a role consists of fields enter, policy, and check, which define
respectively the state to enter by the role, the policy and the condition. Otherwise
the syntax matches the one that we have used in §3.3, with a small extension.

To allow policies that require a quantitative information about threads, we
have added a third field in each rule (tuple) of the policy list. This field may
contain a number of threads of the corresponding role from which the rule begins
to apply (the default value is 1), e.g. replacing [] by [2] in the (Wait, [Writer],

[]) policy (see the first constraint) would mean that the Reader will be excluded
only if there are at least two Writers waiting.

Role-Based Declarative Synchronization for Reconfigurable Systems 63

5 Dynamic Policy Switching

Our constraint language could be used to extend the separation-of-concerns prin-
ciple to systems that must be reconfigured without stopping them. For such
systems, we consider a dynamic switching of synchronization constraints.

Each constraint is guarded by a boolean function (defined in the application
program). Only a constraint whose guard has returned true is chosen for syn-
chronization. If several guards have returned true, then the order of applying the
corresponding policies depends on the RBS package. The RBS package imple-
mentation makes sure that the transition between different policy types is atomic
and a new policy is correctly satisfied. We could easily extend the model in §3.3
accordingly, by requiring the second component of a constraint declaration to
be a triple (C,P,C’), where C is a guard (we omitted it for clarity).

Below are two example constraints on a role Reader to enter a state In. The
guard functions examine a content of a boolean variable happy hour. The policy
switching is “triggered” on-the-fly by the program execution state. Depending
on the current value stored in happy hour (returned with the ! construct that is
used in OCaml to read mutable data) the synchronizer will either evaluate the
first constraint, if happy hour contains true, or the second one (otherwise).

synchronizer#define_constraint

Reader [{
enter = In;

guard = [(fun () -> !happy_hour)];

policy = (Excluded, [(In, [Writer; Sysdmin], [])]);

check = [(fun () -> computer#is_working)]

};
{
enter = In;

guard = [(fun () -> not !happy_hour)];

policy = (Excluded, [(In, [Writer; Sysadmin], []);

(Wait, [Writer], [])]);

check = [(fun () -> computer#is_working)]

}];

The policy in the first constraint removes the clause about the priority of writers
from the second constraint (explained in §4) and so it equals the rights of readers
and writers to access the computer’s screen during a “happy hour”.

6 Example Application

To facilitate experimentation, we have prototyped a small web access server that
provides access to remote services to a large number of clients. The clients may
have quite different workload profiles and priorities, simultaneous access of some
client types can be forbidden. Accessing a distant resource such as a remote web
service or database can be both expensive and time consuming. Therefore such
accesses should be well controlled and fine-tuned, considering different client

64 Vlad Tanasescu and Pawe�l T. Wojciechowski

H

L

M D

Roles Applications

The Web

Clients

WA Package

Web Access Server

Fig. 2. The Web Access Server

profiles, and external factors such as the current traffic, the time of the day, etc.
We also require that:

– to meet any future expectations without reverse-engineering the server’s
components, the code must be flexible and easy to maintain and modify;

– it should be possible to change the control policy dynamically.

Our solution is to use a generic Web Access (WA) synchronization package
to implement a component that is used to access the web. We present a schema
showing the main components of our implementation in Figure 2. Roles prede-
fined by the WA package are the Low (L), Medium (M), and High (H) access priority
roles and the Dispatcher role D.

The access priority roles define different policies of accessing the web based on
the client’s priority (low, medium, high). The general policy constraint between
access priority roles is that roles M and L are blocked if role H is accessing the
web, while L is blocked if either M or L or both are accessing the web. Internally,
each priority role may declare several variants of the policy which may change
dynamically, e.g. once moving from the peak time of the day to the evening, or
when some traffic fluctuation has been observed.

The Dispatcher role recognizes a client contacting the server and dynamically
selects a suitable access priority role, based on the dynamically calculated access
rate of the application and the recent client’s history (e.g. exceeding the time
of calls beyond the agreed time threshold during the previous call, calling the
server too often etc.). When the client application is calling the server for the
first time, the server provides it with a fresh ID that must be presented in the
following calls.

The WA design pattern package enables rapid prototyping of synchronization
constraints. It is easy to customize the system by simply extending a list of
policies that can be switched to at runtime.

7 Conclusions and Future Work

We have proposed a constraint language for separation of synchronization con-
cerns from functional ones while keeping visible the role-oriented aspects of syn-

Role-Based Declarative Synchronization for Reconfigurable Systems 65

chronization problems. Contrary to similar implementations, our solution allows
the programmer to declare complex constraints, which can inspect (at runtime)
the dynamic content of program variables and data.

We have demonstrated that it is possible to implement our approach in a gen-
eral purpose programming language (OCaml) without using external tools. We
can achieve this by analyzing and expressing common concurrency problems in
the form of a design pattern; the patterns are then encoded in the host language
as synchronization packages. We have implemented two example synchronization
packages, where each package defines a given set of roles. One package has been
used to implement a small application, which can dynamically switch between
declared quality-of-service policies for accessing a web service.

We believe that our approach is language independent. However, the type
system of OCaml certainly helped in representing policies in a way that resembles
our formal specification of the constraint language in §3. In the future work, we
would like to experiment with dynamically type-checked scripting languages like
Python, or extensions of the OCaml language, such as Acute. Their dynamic
binding features could make it possible to “plug-in” code of synchronization
constraints at runtime. It may be also worthwhile to investigate the possibility
of extending Java-like languages with the RBS approach, and using extensible
compilers for the implementation of the constraint language.

We hope that our demonstration of declarative synchronization can be in-
structive, especially in the context of adaptive, non-stop systems, which may
occasionally need to change their modus operandi.

References

1. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for
C#. In Proc. ECOOP ’02 (16th European Conference on Object-Oriented Pro-
gramming), LNCS 2374, June 2002.

2. P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Communications of the ACM, 14(10):667–668, Oct. 1971.

3. F. L. Fessant and L. Maranget. Compiling join-patterns. In Proc. HLCL ’98
(Workshop on High-Level Concurrent Languages), 1998.

4. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In Proc. CONCUR ’96 (7th Conference on Concurrency Theory),
LNCS 1119, Aug. 1996.

5. S. Frølund and G. Agha. A language framework for multi-object coordination. In
Proc. ECOOP ’93 (7th European Conference on Object-Oriented Programming),
LNCS 627, July 1993.

6. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Second Edition. Addison Wesley, 2000.

7. M. A. Hiltunen and R. D. Schlichting. A configurable membership service. IEEE
Transactions on Computers, 47(5):573–586, 1998.

8. W. Hursch and C. Lopes. Separation of concerns. Technical Report NU-CCS-95-03,
College of Computer Science, Northeastern University, Feb. 1995.

9. R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-oriented
programs. In Proc. ECOOP ’03 (17th European Conference on Object-Oriented
Programming), LNCS 2743, July 2003.

66 Vlad Tanasescu and Pawe�l T. Wojciechowski

10. S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. POPL ’96
(23rd ACM Symposium on Principles of Programming Languages), Jan. 1996.

11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
Getting started with AspectJ. Communications of the ACM, 44(10):59–65, 2001.

12. C. V. Lopes. D: A Language Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University, Dec. 1997 (1998).

13. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In Research Directions in Concurrent Object-
Oriented Programming, pages 107–150. MIT Press, 1993.

14. S. Mena, A. Schiper, and P. T. Wojciechowski. A step towards a new generation
of group communication systems. In Proc. Middleware 2003, LNCS 2672, 2003.

15. G. Milicia and V. Sassone. Jeeg: A programming language for concurrent objects
synchronization. In Proc. ACM Java Grande/ISCOPE Conference, Nov. 2002.

16. G. Milicia and V. Sassone. Jeeg: Temporal constraints for the synchronization of
concurrent objects. Technical Report RS-03-6, BRICS, Feb. 2003.

17. Objective Caml. http://caml.inria.fr.
18. P. Panangaden and J. Reppy. The Essence of Concurrent ML. In F. Nielson,

editor, ML with Concurrency: Design, Analysis, Implementation, and Application,
pages 5–29. Springer, 1997.

19. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

20. Python. http://www.python.org/.
21. R. Ramirez and A. E. Santosa. Declarative concurrency in Java. In Proc. HIPS

2000 (5th IPDPS Workshop on High-Level Parallel Programming Models and Sup-
portive Environments), May 2000.

22. R. Ramirez, A. E. Santosa, and R. H. C. Yap. Concurrent programming made easy.
In Proc. ICECCS (6th IEEE International Conference on Engineering of Complex
Computer Systems), Sept. 2000.

23. S. Ren and G. A. Agha. RTsynchronizer: Language support for real-time specifica-
tions in distributed systems. In Proc. ACM Workshop on Languages, Compilers,
& Tools for Real-Time Systems, 1995.

24. P. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams, F. Z. Nardelli,
P. Habouzit, and V. Vafeiadis. Acute: High-level programming language design
for distributed computation. Design rationale and language definition. Techni-
cal Report 605, University of Cambridge Computer Laboratory, Oct. 2004. Also
published as INRIA RR-5329.

25. P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-independent com-
munication for mobile agents: A two-level architecture. In Internet Programming
Languages, LNCS 1686, pages 1–31, 1999.

26. B. Stroustrup. The Design and Evolution of C++. Addison Wesley, 1994.
27. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/.
28. P. T. Wojciechowski. Concurrency combinators for declarative synchronization.

In Proc. APLAS 2004 (2nd Asian Symposium on Programming Languages and
Systems), volume 3302 of LNCS. Springer, Nov. 2004.

29. P. T. Wojciechowski and P. Sewell. Nomadic Pict: Language and infrastructure
design for mobile agents. IEEE Concurrency. The Computer Society’s Systems
Magazine, 8(2):42–52, April-June 2000.

Towards a More Practical Hybrid Probabilistic
Logic Programming Framework

Emad Saad and Enrico Pontelli

Department of Computer Science
New Mexico State University

{emsaad,epontell}@cs.nmsu.edu

Abstract. The hybrid probabilistic programs framework [1] allows the
user to explicitly encode both logical and statistical knowledge avail-
able about the dependency among the events in the program. In this
paper, we extend the language of hybrid probabilistic programs by al-
lowing disjunctive composition functions to be associated with heads of
clauses, and we modify its semantics to make it more suitable to en-
code real-world applications. The new semantics is a natural extension
of standard logic programming semantics. The new semantics of hybrid
probabilistic programs also subsumes the implication-based probabilis-
tic approach proposed by Lakshmanan and Sadri [12]. We provide also
a sound and complete algorithm to compute the least fixpoint of hybrid
probabilistic programs with annotated atomic formulas as rule heads.

1 Introduction

Reasoning with uncertain knowledge is an important issue in most real-world
applications, including those in AI domains. The literature is rich of proposals
for extensions of the Logic Programming (LP) framework with different notions
of uncertainty (e.g., [1, 4–6, 8, 9, 11–14,16, 18–20, 22, 24]), providing the ability
to represent both logical as well as probabilistic knowledge about a domain.
The semantics of such frameworks provide ways to systematically derive logical
conclusions along with their associated probabilistic properties. The differences
between these frameworks rely mainly on the underlying formalism of uncer-
tainty adopted and on the way certainty values are associated to the rules and
facts of the logic programs. These formalisms include fuzzy set theory [22, 24],
possibilistic logic [4], hybrid formalisms [11, 13], multi-valued logic [5, 6, 8, 9], and
formalisms based on probability theory [1, 12, 18–20].

In the context of frameworks based on probability theory, Dekhtyar and Sub-
rahmanian [1] proposed the notion of Hybrid Probabilistic Programs (HPP). Hy-
brid probabilistic programs are built upon the idea of annotated logic programs,
originally introduced in [23] and extensively studied in [8, 9, 15, 17]. Uncertainty
is encoded in the form of probability intervals, representing constraints on a set
of possible probability distributions associated to the elements of the Herbrand
Universe. The key idea in hybrid probabilistic programs is to enable the user
to explicitly encode his/her knowledge about the type of dependencies existing

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 67–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 Emad Saad and Enrico Pontelli

between the probabilistic events being described by the programs. HPP is a
generalization of the probabilistic annotated logic programming approach – origi-
nally proposed in [18] and further extended in [19] – where different probabilistic
strategies are allowed instead of a fixed probabilistic strategy [18, 19]. Observe
that these approaches differ from the probabilistic logic programming schemes
(e.g., [7, 21]) where a single probability distribution over some logical entities
(e.g., possible worlds) is defined (see [25] for a general discussion of these latter
schemes).

The aim of probabilistic logic programming in general, and of the HPP frame-
work in particular, is to allow reasoning and decision making with uncertain
knowledge; in the context of the probabilistic framework, uncertainty is repre-
sented using probability theory. Nevertheless, to achieve this goal and to be able
to perform reasoning tasks in a more practical way and with cognitively mean-
ingful results, a more sophisticated syntax and semantics for HPP than the one
previously proposed [1] is required. Let us consider the following example.

Example 1. Consider the following robot planning task, adapted from [10]. A
robot’s grasping operation is not always successful, especially if the robot’s grip-
per is wet. The robot is able to grasp a block with a probability 0.95 after
executing the pickup action in the state of the world in which the gripper is
dry, while the probability decreases to 0.5 in the state of the world where the
gripper is wet. Assume that initially the block is not held, and the gripper is dry
with probability 0.7. There are two world states in which the robot can hold the
block after executing the action pickup. The state in which the gripper is dry
and the robot holds the block has probability 0.7× 0.95 = 0.665. If the gripper
is initially wet, then the second resulting state where the robot holds the block
has probability 0.3 × 0.5 = 0.15. Hence, the robot is successfully holding the
block with probability 0.665 + 0.15 = 0.815. This planning domain problem can
be represented in the HPP framework as follows:

holdBlock : [0.95 × V, 0.95 × V] ← pickup : [1, 1], gripperDry : [V, V]
holdBlock : [0.5 × V, 0.5 × V] ← pickup : [1, 1], not gripperDry : [V, V]
not gripperDry : [1 − V, 1 − V] ← gripperDry : [V, V]
pickup : [1, 1] ←
gripperDry : [0.7, 0.7] ←

Example 1 demonstrates a shortcoming in the semantical characterization of
HPP. In spite of the intuitive correctness and simplicity of the above encod-
ing, the semantics of HPP fails to assign the correct probability interval –
[0.815, 0.815] – to the formula holdBlock. This can be shown by computing
the least fixpoint of this program. The least fixpoint assigns [1, 1] to pickup,
[0.7, 0.7] to gripperDry, [0.3, 0.3] to not gripperDry, and ∅ to holdBlok. ∅
is assigned to holdBlock because, by applying the first rule in the program,
holdBlock is derived with the probability interval [0.665, 0.665], and by apply-
ing the second rule holdBlock is derived with the interval [0.15, 0.15]. Therefore,
according to HPP’s semantics, holdBlock is assigned the probability interval:
∩{[0.665, 0.665], [0.15, 0.15]} = ∅. Similar situations occur frequently in HPP
encodings.

Practical Hybrid Probabilistic Logic Programming Framework 69

This shortcoming arises, mainly, from the chosen ordering between proba-
bility intervals – i.e., set inclusion order – employed in the HPP semantics [1].
Under this ordering, given the probability intervals [a1, a2], [b1, b2] ⊆ [0, 1] for a
certain event e, [a1, a2] ≤ [b1, b2] iff [b1, b2] ⊆ [a1, a2]. This set inclusion order
is known as the knowledge order [18–20, 1]. This means that [b1, b2] provides a
more precise probabilistic knowledge about the probability of e than [a1, a2].
However, when reasoning is performed to make decisions, the outcome usually
does not depend on how more knowledgeable we are about the probability of
the various events, but it depends on how likely these events are. Therefore, it
is more reasonable to make use of an ordering which describes the likelyhood
of a certain event e to guide the reasoning task. This intuition can be captured
by employing the natural ordering ≤t – called truth order – described in [12,
1]. The truth order ≤t asserts that if [a1, a2], [b1, b2] ⊆ [0, 1] are two probability
intervals for the events e1 and e2 respectively, then [a1, a2] ≤t [b1, b2] iff a1 ≤ b1

and a2 ≤ b2. Hence, the event e2 is more likely to occur than the event e1.
The problem of having unintuitive or incorrect probability intervals in the

above example could be avoided in Dekhtyar and Subrahmanian’s approach [1],
by modifying the HPP encoding of the problem. This is accomplished by disal-
lowing holdBlock to appear as head of more than one clause – thus, removing
the need to perform intersection between intervals – and by using more complex
annotation functions. Consider the following encoding of Example 1 using the
approach in [1].

Example 2.

holdBlock : [0.95 × V + 0.5 × V1, 0.95 × V + 0.5 × V1]
← pickup : [1, 1], gripperDry : [V, V],

not gripperDry : [V1, V1].
not gripperDry : [1 − V, 1 − V] ← gripperDry : [V, V].
pickup : [1, 1] ← . gripperDry : [0.7, 0.7] ← .

The above encoding ensures the correct solution of the problem described in
Example 1 under the semantics of HPP [1]. Nevertheless, the encoding is fairly
unintuitive, since two clauses are combined into one – rather complex – clause,
with a fairly complex annotation function. This encoding strategy is not feasible
in general; in presence of many alternative ways to determine the probability
interval of an event, we would obtain very complex clauses and annotation func-
tions. Providing a different semantics for HPP to sustain simple and intuitive
encodings is considered essential to make the framework practical.

In this work we propose to develop an alternative semantics for HPP to ac-
commodate for the truth order instead of the knowledge order. The introduction
of a different ordering between probability intervals for events requires signifi-
cant changes at the syntactic and semantics level. The changes include the use of
disjunctive composition functions, similar to those used in [12], for combing the
probability intervals derived from different clauses and associated to the same
events.

The main contribution of this work is the definition of a new syntax and se-
mantics for the HPP framework presented in [1], to appropriately reason proba-

70 Emad Saad and Enrico Pontelli

bilistically about real-world applications by employing the truth order. The new
framework provides more intuitive and accurate probability intervals. We show
that problems such as the one described in Example 1 are properly addressed
in the new framework. The new semantics is a natural extension of standard
logic programming semantics. We also show that the new hybrid probabilistic
programming framework can be easily generalized to subsume Lakshmanan and
Sadri’s [12] approach for probabilistic logic programming – a feature which was
not available under the previous semantics for HPP. This shows, in general, any
appropriately defined annotation based logic programming framework can sub-
sumes any implication based logic programming framework. We provide sound
and complete algorithm to compute the least fixpoint of hybrid probabilistic
programs with annotated atomic formulas as heads of their rules.

2 Preliminaries

In this section we review the foundations of Hybrid Probabilistic Programs
(HPPs) [1].

2.1 Probabilistic Strategies

Let C[0, 1] denote the set of all closed intervals in [0, 1]. In the context of HPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions and disjunctions of atoms) and encoded as intervals in C[0, 1]. The type
of dependency among the simple events within a compound event are determined
according to probabilistic strategies selected by the programmer. This section in-
troduces the notion of probabilistic strategy and presents some of its properties
[1] – opportunely modified to accommodate for the truth order between intervals.

Definition 1 (Truth Order). Let [a1, b1], [a2, b2] ∈ C[0, 1]. Then [a1, b1] ≤t

[a2, b2] iff a1 ≤ a2 and b1 ≤ b2.

Intuitively, an interval is preferred if it provides greater evidence of truth.

Lemma 1. The set C[0, 1] and the relation ≤t form a complete lattice. The join
(⊕t) is defined as [a1, a2] ⊕t [b1, b2] = [max{a1, b1}, max{a2, b2}] and the meet
(⊗t) is defined as [a1, a2]⊗t [b1, b2] = [min{a1, b1}, min{a2, b2}].

A probabilistic strategy is composed of two functions; the composition function
is used to combine the probability intervals of two events, while the maximal
interval function is used to provide an estimate of the probability of a primitive
event e given the probability of a compound event containing e.

Definition 2. A probabilistic strategy (p-strategy) ρ is a pair of functions
〈c, md〉. c is a probabilistic composition function c : C[0, 1]× C[0, 1] → C[0, 1]
that satisfies the following properties:

a. Commutativity: c([a1, b1], [a2, b2]) = c([a2, b2], [a1, b1])
b. Associativity: c(c([a1, b1], [a2, b2]), [a3, b3]) = c([a1, b1], c([a2, b2], [a3, b3]))

Practical Hybrid Probabilistic Logic Programming Framework 71

c. Monotonicity: if [a1, b1] ≤t [a3, b3] then c([a1, b1], [a2, b2]) ≤t c([a3, b3],
[a2, b2])

d. Separation: there exist two functions c1 and c2 such that
c([a1, b1], [a2, b2]) = (c1([a1, a2]), c2([b1, b2]))

md : C[0, 1]→ C[0, 1] is called the maximal interval function.

Given the probability range of a complex event, the maximal interval func-
tion md returns the best estimate of the probability range of a primitive event.
The composition function c returns the probability range of a conjunction or
disjunction of two or more events. The above definition is different from the one
adopted in [1] – being based on the truth order instead of knowledge order to es-
tablish monotonicity. Since the composition functions in the various p-strategies
are commutative and associative, the order in which a composition function is
applied to its arguments is irrelevant. For the sake of convenience, we introduce
the following simplified notation:

Definition 3. Let M = {[a1, b1], . . . , [an, bn]} be a set of distinct probability
intervals. The notation cM is defined as follows:
• cM = [0, 0] if n = 0.
• cM = [a1, b1] if n = 1.
• cM = c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn]) . . .) if n ≥ 2.

According to the type of combination among events, p-strategies are clas-
sified into conjunctive p-strategies and disjunctive p-strategies [1]. Conjunctive
strategies are employed to compose events belonging to conjunctive formulae,
while disjunctive strategies are employed with disjunctions of events.

Definition 4. Let 〈c, md〉 be a p-strategy.
• 〈c, md〉 is a conjunctive p-strategy if the following properties hold:

a. Bottomline: c([a1, b1], [a2, b2]) ≤t [min(a1, a2), min(b1, b2)]
b. Identity: c([a, b], [1, 1]) = [a, b]
c. Annihilator: c([a, b], [0, 0]) = [0, 0]
d. Maximal interval: md([a, b]) = [a, 1]

• 〈c, md〉 is a disjunctive p-strategy if the following properties hold:
a. Bottomline: [max(a1, a2), max(b1, b2)] ≤t c([a1, b1], [a2, b2])
b. Identity: c([a, b], [0, 0]) = [a, b]
c. Annihilator: c([a, b], [1, 1]) = [1, 1]
d. Maximal interval: md([a, b]) = [0, b].

Example 3. The following are examples of p-strategies [1]:
• Independence p-strategy (in):
− Conjunctive (inc): cinc([a1, b1], [a2, b2]) = [a1a2, b1b2].
− Disjunctive (ind): cind([a1, b1], [a2, b2]) = [a1 + a2 − a1a2, b1 + b2 − b1b2].

72 Emad Saad and Enrico Pontelli

• Ignorance p-strategy (ig):
− Conjunctive (igc): cigc([a1, b1], [a2, b2]) = [max(0, a1 +a2−1), min(b1, b2)].
− Disjunctive (igd): cigd([a1, b1], [a2, b2]) = [max(a1, a2), min(1, b1 + b2)].
• Positive correlation p-strategy (pc):
− Conjunctive (pcc): cpcc([a1, b1], [a2, b2]) = [min(a1, a2), min(b1, b2)].
− Disjunctive (pcd): cpcd([a1, b1], [a2, b2]) = [max(a1, a2), max(b1, b2)].
• Negative correlation p-strategy (nc):

− Disjunctive (ncd): cncd([a1, b1], [a2, b2]) = [min(1, a1 +a2), min(1, b1 +b2)].

2.2 Annotations

Let L be an arbitrary first-order language with finitely many predicate symbols,
constants, and infinitely many variables. Let S = Sconj ∪ Sdisj be an arbitrary
set of p-strategies, where Sconj is the set of all conjunctive p-strategies in S and
Sdisj is the set of all disjunctive p-strategies in S. The notions of term, atom, and
literal are defined in the usual way. The Herbrand base of L is denoted by BL.

Definition 5. An annotation function of arity n is a computable total function
f : [0, 1]n → [0, 1].

Definition 6 (Annotations). An annotation item is
• A constant in [0, 1], or
• A variable ranging over [0, 1] – called annotation variable, or
• f(α1, . . . , αn) where f is an annotation function of arity n and α1, . . . , αn

are annotation items.
Annotation are expressions of the form [α1, α2], where α1, α2 are annotation
items.

Example 4. [0.91, 1], [V1 ∗ V2, V1], and [0, V] are annotations where V, V1, V2 are
annotation variables.

The following definition introduces the notion of hybrid basic formula, which
describes how p-strategies are associated to conjunctions and disjunctions of
atoms.

Definition 7 (Hybrid Basic Formula). Let us consider a collection of atoms
A1, . . . , An, a conjunctive p-strategy ρ, and a disjunctive p-strategy ρ′. Then
A1 ∧ρ . . .∧ρ An and A1 ∨ρ′ . . .∨ρ′ An are called hybrid basic formulae. bfS(BL)
is the set of all ground hybrid basic formulae formed using distinct atoms from
BL and p-strategies from S.

Finally, the following definition introduces a simplified notation used to de-
scribe generic partitioning of hybrid basic formulae.

Definition 8. Let F, G, H ∈ bfS(BL), and let F = F1 ∗ρ . . . ∗ρ Fn, G = G1 ∗ρ

. . . ∗ρ Gk, and H = H1 ∗ρ . . . ∗ρ Hm, where ∗ ∈ {∧,∨} and ρ ∈ S. Then G ⊕ρ

H = F iff k > 0, m > 0, {G1, . . . , Gk} ∪ {H1, . . . , Hm} = {F1, . . . , Fn}, and
{G1, . . . , Gk} ∩ {H1, . . . , Hm} = ∅.

Practical Hybrid Probabilistic Logic Programming Framework 73

3 A New Semantics for Hybrid Probabilistic Programs

In the new semantics, the composition functions for the disjunctive p-strategies
are used to combine the probability intervals of the same hybrid basic formula
derived from different hybrid probabilistic clauses. For example, if a hybrid prob-
abilistic program consists of the clauses

a : [0.5, 0.6]← b : [0.7, 0.7] a : [0.4, 0.7]← c : [0.5, 0.8]
b : [0.7, 0.7] ← c : [0.5, 0.8] ←

and it is known that deriving a from the first clause with probability [0.5, 0.6]
is positively correlated to deriving a with probability [0.4, 0.7] from the sec-
ond clause, then a can be concluded with probability cpcd([0.5, 0.6], [0.4, 0.7]) =
[max(0.5, 0.4), max(0.6, 0.7)] = [0.5, 0.7] (see also Example 3). A similar idea has
been used in [12] in the context of an implication-based approach to probabilis-
tic LP.

3.1 Syntax

In this subsection, we provide a new syntax for hybrid probabilistic programs.
This is a modification of the notion of hybrid probabilistic programs of [1],
by allowing the user to encode his/her knowledge about how to combine the
probability intervals for a hybrid formula derived from different clauses.

Definition 9 ([1]). A hybrid probabilistic rule (h-rule) is an expression of the
form

F : μ← F1 : μ1, . . . , Fn : μn

where F, F1, . . . , Fn are hybrid basic formulae and μ, μ1, . . . , μn are annotations.
F : μ is called the head of the h-rule, while (F1 : μ1, . . . , Fn : μn) is its body.

Definition 10. A hybrid probabilistic program (h-program) over S is a pair P =
〈R, τ〉 where R is a finite set of h-rules involving only p-strategies from S, and
τ is a mapping τ : bfs(BL)→ Sdisj .

The mapping τ in Definition 10 associates to each ground hybrid basic formula
F a disjunctive p-strategy, that will be used to combine the intervals obtained
from different rules that have F as head.

Definition 11. Let P = 〈R, τ〉 be an h-program. P is said to be a ground h-
program iff all h-rules in R do not contain neither variables nor annotation
variables.

Example 5. The following is a typical h-program P = 〈R, τ〉 where R

a : [0.5, 0.6]← b : [0.7, 0.7] a : [0.4, 0.7]← c : [0.5, 0.8]
b : [0.7, 0.7] ← c : [0.5, 0.8] ←

and τ(a) = ncd, τ(b) = τ(c) = π, where π is an arbitrary disjunctive p-strategy.

74 Emad Saad and Enrico Pontelli

3.2 Declarative Semantics

The concept of probabilistic model is based on the notion of hybrid formula
function.

Definition 12. A hybrid formula function h is a mapping h : bfS(BL) → C[0, 1]
which satisfies the following conditions:

1. Commutativity: h(F) = h(G1 ∗ρ G2) if F = G1 ⊕ρ G2.

2. Composition: cρ(h(G1), h(G2)) ≤t h(F) if F = G1 ⊕ρ G2.

3. Decomposition: For any hybrid basic formula F and for all ρ ∈ S and
G ∈ bfS(BL), we have that mdρ(h(F ∗ρ G)) ≤t h(F).

We denote with HFF the set of all hybrid formula functions for a given HPP
language.

Let us extend the notion of truth order to the case of hybrid formula functions
and investigate some properties of the resulting partial order relation.

Definition 13. If h1 and h2 are hybrid formula functions, then
(h1 ≤t h2)⇔ (∀F ∈ bfS(BL) : h1(F) ≤t h2(F))

Lemma 2. The set of all hybrid formula functions HFF and the truth order
≤t form a complete lattice. The meet ⊗t and the join ⊕t operations with respect
to ≤t are defined as follows: for all F ∈ bfS(BL)

(h1 ⊗t h2)(F) = h1(F)⊗t h2(F) (h1 ⊕t h2)(F) = h1(F)⊕t h2(F)

The top element of the lattice 〈HPP,≤t〉 is the mapping bfS(BL) → [1, 1] and
the bottom element is the mapping bfS(BL)→ [0, 0].

Let us now describe how formula functions are employed as models of hybrid
probabilistic programs.

Definition 14 (Formula Satisfaction). Let h be a hybrid formula function,
F ∈ bfS(BL), and μ ∈ C[0, 1]. Then
• h is a p-model of (F : μ) (denoted by h |= F : μ) iff μ ≤t h(F).
• h is a p-model of F1 : μ1, . . . , Fn : μn (denoted by h |= F1 : μ1, . . . , Fn : μn)
iff for all 1 ≤ i ≤ n, h is a p-model of Fi : μi.
• h is a p-model of the h-rule F : μ ← Body iff h is a p-model of F : μ or h
is not a p-model of Body.

Since probability intervals of the same hybrid basic formula F derived from dif-
ferent h-rules are combined together to strengthen the overall probability interval
of F , more conditions need to be imposed to define the concept of p-models of
h-programs. The following definitions are needed. The intermediate operator SP

makes use of the disjunctive p-strategy τ(F) to combine the probability intervals
for the hybrid basic formula F directly derived from different h-rules.

Definition 15. Let P = 〈R, τ〉 be a ground h-program and h a hybrid formula
function. The intermediate operator SP is the mapping SP : HFF → HFF such
that SP (h)(F) = cτ(F) M where M = {μ|F : μ← Body ∈ R ∧ h |= Body}.

Practical Hybrid Probabilistic Logic Programming Framework 75

Lemma 3. The SP operator is monotonic.

The following example shows that SP is in general not continuous.

Example 6. Let P is an h-program of the form
q : [0.3, 0.3]← p : [1, 1]

Let hj(p) = [1− (1
2)j , 1− (1

2)j] and hj(q) = [0,0] where 0 ≤ j ≤ ∞ be hybrid for-
mulae functions for P . lub(hj)(p) = [1, 1] and hence, SP (lub(hj))(q) = [0.3, 0.3].
However, for all j, SP (hj)(q) = [0, 0] and hence lub(SP (hj)(q)) = [0, 0].

Observe that if M = ∅ – i.e., there are no active h-rules in P having F as
head – then SP (h)(F) = [0, 0]. However, it is possible to have h-rules in P where
the hybrid basic formulae in their heads contains F as a constituent, e.g., F ∗ρG.
Therefore, the probability interval associated to F ∗ρ G (see definition 16) can be
used to extract the probability interval of F by employing the maximal interval
function, mdρ, which in turn will be used to strengthen the overall probability
interval of F (Definition 17). An additional contribution to the probability of F
can be derived when F is not atomic and the information about F ’s probability
can be inductively obtained using h for every pair G, H of formulae such that
G⊕ρ H = F and using cρ to combine these intervals.

Definition 16. Let P = 〈R, τ〉 be a ground h-program and h be a hybrid formula
function. Then for each F ∈ bfS(BL):
• If F is atomic then

Mh
1 (F) = {〈μ, ρ〉|(F ∗ρ G) : μ← Body ∈ R, ∗ ∈ {∨,∧}, ρ ∈ S, h |= Body}

• F = F1 ∗ρ . . . ∗ρ Fn is not atomic then:

Mh
2 (F) =

{
〈μ, ρ〉 | (D1 ∗ρ . . . ∗ρ Dk) : μ← Body ∈ R, h |= Body,

{F1, . . . , Fn} ⊂ {D1, . . . , Dk}, n < k

}
Definition 17. Let P = 〈R, τ〉 be a ground h-program and h be a hybrid formula
function. Then, h is a p-model of P iff h is a p-model of every h-rule in P and
for all F ∈ bfS(BL) the following conditions are satisfied:
• If F is atomic then cτ(F)(cτ(F){mdρ(μ)|〈μ, ρ〉 ∈ Mh

1 (F)}, SP (h)(F)) ≤t h(F)
• If F = F1 ∗ρ . . . ∗ρ Fn is not atomic then:

cτ(F)

(
SP (h)(F), cτ(F)

(
{cρ(h(G), h(H))|G ⊕ρ H = F}∪
{mdρ(μ)|〈μ, ρ〉 ∈ Mh

2 (F)}

))
≤t h(F)

The following properties allow us to provide a simple definition of the least p-
model of a hybrid probabilistic program.

Proposition 1. Let P be a ground h-program and let h1, h2 be two p-models of
P . Then, h1 ⊗t h2 is also a p-model of P .

Corollary 1 (The Least Model hP). Let P be a ground h-program and let
HP be the set of all p-models of P . Then, hP = ⊗t{h|h ∈ HP } is the least
p-model of P .

76 Emad Saad and Enrico Pontelli

3.3 Fixpoint Semantics

Associated to each h-program, P , is a fixpoint operator TP , that takes a hybrid
formula function as an argument and returns a hybrid formula function.

Definition 18. Let P = 〈R, τ〉 be a ground h-program and h a hybrid formula
function. The fixpoint operator TP is a mapping TP : HFF → HFF defined as
follows:

• If F is atomic then TP (h)(F) = cτ(F)(cτ(F){mdρ(μ)|〈μ, ρ〉 ∈ Mh
1 (F)},

SP (h)(F))
• If F = F1 ∗ρ . . . ∗ρ Fn is not atomic then

TP (h)(F) = cτ(F)

⎛⎝ SP (h)(F),

cτ(F)

(
{cρ(TP (h)(G), TP (h)(H))|G ⊕ρ H = F}

∪ {mdρ(μ)|〈μ, ρ〉 ∈ Mh
2 (F)}

) ⎞⎠
The intuition in the above definition is that, in order to compute the least fixpoint
of an h-program P , for any F ∈ bfS(BL), we need to consider: (i) the h-rules
having F in their heads, (ii) the h-rules where F appears as a component of
the head, and (iii) the h-rules whose heads contain constituents of F . Let us
now proceed in the construction of the least p-model as repeated iteration of the
fixpoint operator TP :

Definition 19. Let P be a ground h-program. Then:
• TP ↑ 0 = h⊥ where h⊥ is the mapping h⊥ : bfS(BL)→ [0, 0]
• TP ↑ α = TP (TP ↑ (α− 1)) if α is a successor ordinal.
• TP ↑ λ = ⊕t{TP ↑ α|α < λ} if λ is a limit ordinal.

Lemma 4. The TP operator is monotonic.

The properties of the TP operator guarantee the existence of a least fixpoint and
its correspondence to the least model of an h-program.

Proposition 2. Let P be an h-program and h be hybrid formula function. Then
h is a model of P iff TP (h) ≤t h.

Theorem 1. Let P be an h-program. Then, hP = lfp(TP).

The TP operator for annotated logic programming in general, and proba-
bilistic annotated logic programming in particular, is not continuous [1, 18, 19,
23]. The only case when TP is continuous is whenever the annotations appear
in the body of every h-rule are variable annotations [9]. This extends to the TP

operator defined in this paper.
To illustrate how the new semantics is more sophisticated and intuitive, let

us reconsider the robot gripper planning example, introduced Section 1, which
can be encoded as the following h-program P = 〈R, τ〉 where R is

holdBlock : [0.95× V, 0.95× V]← pickup : [1, 1], gripperDry : [V, V].
holdBlock : [0.5× V, 0.5× V] ← pickup : [1, 1], not gripperDry : [V, V]
not gripperDry : [1− V, 1− V] ← gripperDry : [V, V]
pickup : [1, 1]←
gripperDry : [0.7, 0.7]←

Practical Hybrid Probabilistic Logic Programming Framework 77

and τ is defined as τ(holdBlock) = ncd and τ(x) = π for x �= holdBlock,
where π is an arbitrary disjunctive p-strategy. According to our semantics, the
least fixpoint of P assigns [1, 1] to pickup, [0.7, 0.7] to gripperDry, [0.3, 0.3]
to not gripperDry, and [0.815, 0.815] to holdBlok. This happens because, by
applying the first h-rule, holdBlock is derived with the probability interval
[0.665, 0.665] and by applying the second h-rule, holdBlock is derived with
the probability interval [0.15, 0.15]. Since the disjunctive negative correlation
p-strategy is associated to holdBlock, holdBlock is assigned

cncd{[0.665, 0.665], [0.15, 0.15]} =
cncd([0.665, 0.665], [0.15, 0.15]) =
[min(1, 0.665 + 0.15), min(1, 0.665 + 0.15)] =
[min(1, 0.815), min(1, 0.815)] = [0.815, 0.815]

which represents the expected solution of the problem.
The upward iteration operator might require an infinite number of iterations

to produce the least fixpoint. Consider the following example adapted from [8].

Example 7. Let P = 〈R, τ〉 be an h-program where R is

r : [0.5, 0.5] ←
q : [0.6, 0.6] ←
q : [V1 × V2, V1 × V2] ← r : [V1, V1], q : [V2, V2]

and τ(q) = ind and τ(q) = π. In the first iteration TP ↑ 1 assigns [0.5, 0.5] to r,
[0.6, 0.6] to q. TP ↑ 2 assigns [0.72, 0.72] to q while TP ↑ 2(r) is the same. After the
third iteration, TP ↑ 3(q) = [0.744, 0.744]. This process continues by providing a
better approximation of the interval for q at each iteration. However, the least
fixpoint of P can associate a probability interval to q by following the reasoning
in [8]. Let [Vn−1, Vn−1] and [Vn, Vn] be the probability intervals of q after the
n-1th and nth fixpoint iterations. These two intervals are related by the relation
[Vn, Vn] = [0.6+0.5×Vn−1−0.6×0.5×Vn−1, 0.6+0.5×Vn−1−0.6×0.5×Vn−1].
This simplifies to [Vn, Vn] = [0.6 + 0.2 × Vn−1, 0.6 + 0.2 × Vn−1]. In the limit
we obtain [V, V] = [0.6 + 0.2 × V, 0.6 + 0.2 × V]. Solving this equation yields
[V = 0.6 + 0.2× V, V = 0.6 + 0.2× V] = [0.75, 0.75].

Similarly to what reported in [8], this situation arises from the existence of a
cyclic inference of the same hybrid basic formula with a higher probability inter-
val. This situation does not arise in h-programs that satisfy the finite termination
property [8, 18, 1].

Definition 20. Let P be an h-program. P is said to satisfy the the finite termi-
nation property iff (∀F ∈ bfS(BL))(∃ n < ω)(lfp(TP)(F) = TP ↑ n(F)).

3.4 Discussion

In this section we show that the proposed semantics is a natural extension of
the traditional semantics of definite logic programs.

78 Emad Saad and Enrico Pontelli

First of all, any definite program P can be represented as an h-program pro-
gram P ′ = 〈R, τ〉, where each definite rule a ← b1, . . . , bn ∈ P can be represented
as an h-rule of the form a : cρ([V1, V1], . . . , [Vn, Vn]) ← b1 : [V1, V1], . . . , bn :
[Vn, Vn] ∈ R, where a, b1, . . . , bn are atomic hybrid basic formulas, every [Vi, Vi]
is a variable annotation, ρ is any conjunctive p-strategy, cρ is the conjunctive
composition function corresponding to ρ, and τ is any arbitrary assignment of
disjunctive p-strategies. Each fact a ← is converted to a : [1, 1]←. Observe that
[1, 1] represents the truth value true and [0, 0] represents the truth value false. In
addition, we use any arbitrary disjunctive p-strategy ρ′ to disjoin the probability
intervals associated the same atomic formula derived from different h-rules. This
is because for any disjunctive p-strategy ρ′ ∈ S, the probability intervals associ-
ated to a is a set of intervals from {[0, 0], [1, 1]}, then by the annihilator axiom,
c′ρ{[1, 1], . . . , [1, 1], [0, 0], . . . , [0, 0]} = [1, 1]. Moreover, by the annihilator axiom,
for any conjunctive p-strategy ρ, cρ{[1, 1], . . . , [1, 1], [0, 0], . . . , [0, 0]} = [0, 0].

An interpretation of a definite program P can be viewed as a mapping I :
BL → {[0, 0], [1, 1]}. Observe also that the program P ′ contains only atomic
formulae; thus, for the sake of simplicity, we will refer to a p-model h simply as
a function of the type h : BL → C[0, 1].

Proposition 3. Let P be a definite logic program and let MP be its least Her-
brand model. Let hP be the least p-model of P ′. Then, for each F ∈ BL we have
that hP (F) = [1, 1]⇔ F ∈ MP .

3.5 Computation of the Least Fixpoint of HPP1

In this subsection we provide an algorithm to compute the least fixpoint for a
large class of hybrid probabilistic programs, denoted by HPP1. The proposed
algorithm is an adaptation of the Dowling-Gallier algorithm for determining
the satisfiability of Horn formulae [3]. Let P be an HPP program. Then P is
an HPP1 program iff each h-rule in P has an annotated atomic head. This
definition of HPP1 class simplifies the definition of the TP operator for any
program P ∈ HPP1 as follows.

Definition 21. Let P = 〈R, τ〉 be a ground h-program in HPP1 and h a hybrid
formula function. The fixpoint operator is a mapping TP : HFF → HFF defined
as follows:

1. TP (h)(A) = cτ(A) MA where
MA = {μ|A : μ← Body ∈ R such that h |= Body}.
If MA = ∅, then TP (h)(A) = [0, 0]

2. TP (h)(G1 ∧ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where (G1 ∧ρ G2) ∈ bfS(BP)
3. TP (h)(G1 ∨ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where (G1 ∨ρ G2) ∈ bfS(BP).

The different data structures used in the algorithm are described as follows. As-
sume that P ∈ HPP1 is a ground hybrid probabilistic program. Let A.annotation
denote the annotation assigned to the hybrid basic formula A by the fixpoint
operator TP . This means that, when the algorithm terminates, A.annotation

Practical Hybrid Probabilistic Logic Programming Framework 79

corresponds to lfp(TP)(A). A.μr denotes the annotation associated to the hy-
brid basic formula A in the body of the h-rule r. In other words, A.μr refers
to the annotation associated to the annotated hybrid basic formula A : μr that
appears in the body of the h-rule r. We also maintain, for each atomic hybrid
basic formula A, a list called A.formulalist, which stores every non-atomic hy-
brid basic formula that appears in P and contains A. For example, if (A∧ig B),
(A∨pcC), and (B∧ig C) appear in P , then A.formulalist contains (A∧ig B) and
(A ∨pc C). For each hybrid basic formula A, atomic or non-atomic, we initialize
the list A.rulelist with all the h-rules whose bodies contain A. In addition, every
h-rule r in P is associated with a counter (r.counter) which is initialized to the
number of annotated hybrid basic formulas that appear in the body of r.

The algorithm LFP (described below) works by first initializing the queue
with every annotation A.μ which is associated to an annotated fact A : μ in P .
The loop in lines 2-4 assigns [0, 0] to each formula in the lexicographical enumera-
tion, F1, . . . , FM , of all hybrid basic formulas appear in P . The algorithm LFP in-
crementally handles point (1) of Definition 21 in line 8 whereas the points (2) and
(3) are handled by the for loop in lines 9-12. The loop in lines 14-22 determines
which h-rules in A.rulelist are satisfied by the A.annotation computed so far
and it decrements the counter r.counter if the condition A.μr ≤t A.annotation
holds. In particular, whenever the counter r.counter reaches zero (line 18), the
h-rule r fires and the annotation associated to its head is entered into the queue.
The complete description of the algorithm is given below.

1: Algorithm LFP
2: for each i such that 1 ≤ i ≤ M do
3: Fi.annotation := [0, 0]
4: end for
5: while queue is not empty do
6: (A.μ) := pop(queue)
7: if A is atomic then
8: A.annotation := cτ(A)(A.annotation, A.μ)
9: for each F = A1 ∗ρ . . . ∗ρ Ar(r > 1) ∈ A.formulalist do

10: F.annotation := cρ(A1.annotation, ..., Ar.annotation)
11: enqueue F.annotation
12: end for
13: end if
14: for each rule r ∈ A.rulelist do
15: if A.μr ≤t A.annotation then
16: r.counter := r.counter − 1
17: delete r from A.rulelist
18: if r.counter = 0 then
19: enqueue (H.β) where H : β is the head of r
20: end if
21: end if
22: end for
23: end while

80 Emad Saad and Enrico Pontelli

Theorem 2. Let P be a program in HPP1 and let N be the number of all hybrid
basic formulae in P . The algorithm LFP computes the least fixpoint of TP in
time O(N2).

4 Implication-Based Approaches

In this section we show that the probabilistic Implication Based (IB) frame-
work [12] is subsumed by a straightforward extension of the hybrid probabilistic
framework proposed here. Let us start by performing the following simple ex-
tensions:
• Probabilities in h-programs are now expressed as pairs of intervals ;
• The p-strategies are easily extended to deal with pairs of intervals, in a way

similar to the one described in [12].
Let LC be the set C[0, 1] × C[0, 1]. A probabilistic rule (p-rule) in the IB
framework is an expression of the form (r; ρ, ρ′), where r is of the form (H c←
A1, . . . , An), H, A1, . . . , An are atoms, c ∈ LC , ρ is the conjunctive p-strategy
to be used in the body of r, and ρ′ is the disjunctive p-strategy associated to
the head of r. A probabilistic program (p-program) is a finite set of p-rules, such
that p-rules with the same head in the p-program make use of the same dis-
junctive p-strategy ρ′. Let P be a p-program and BL be the Herbrand base.
The notion of interpretation in the IB framework [12] is defined as a mapping
I : BL → LC . Associated to each p-program, P , is an operator T IB

P that maps
an interpretation to an interpretation and is defined as follows:

T IB
P (I)(H) =

∨
ρ′

⎧⎨⎩
c ∧ρ I(A1) ∧ρ . . . ∧ρ I(An)|

(H c← A1, . . . , An; ρ, ρ′) is a ground
instance of p-rule in P

⎫⎬⎭
The same computation can be expressed in our framework as:
cρ′d{cρc{c, I(A1), . . . , I(An)}|(H c← A1, . . . , An; ρ, ρ′) is a ground p-rule in P}

This is possible because ρ and ρ′ correspond to p-strategies in the sense of
our semantics, where ρc corresponds to the conjunctive p-strategy of ρ and ρ′d
corresponds to the disjunctive p-strategy of ρ′.

Definition 22 (Translation). Let P be a p-program. Then P can be translated
into an h-program, HPr(P) =< R, τ >, where

R =

⎧⎨⎩
H : cρc(c, μ1, . . . , μn) ← A1 : μ1, . . . , An : μn|

(H c←− A1, . . . , An; ρ, ρ′) ∈ P,
μ1, . . . , μn are variable annotations

⎫⎬⎭
τ(H) = ρ′, ∀ (H c←− A1, . . . , An; ρ, ρ′) ∈ P

The following theorem establishes the relation between the probabilistic IB
framework and the new hybrid probabilistic programs framework under the as-
sumption that, without loss of generality, an interpretation in the new hybrid
probabilistic programs framework is a mapping of the type h : BL → LC .

Theorem 3. Let P be a p-program. Then THPr(P) = T IB
P .

Practical Hybrid Probabilistic Logic Programming Framework 81

5 Final Considerations and Future Work

In this work, we proposed an extension of the hybrid probabilistic programming
(HPP) framework, along with a new semantics for the extended language. Hav-
ing such a new language and semantics is important in order to enable more
realistic and practical applications, such as those in probabilistic planning, and
to make the framework more practical and easy to use. The new framework of
hybrid probabilistic logic programs is built on the work of the two major ap-
proaches in probabilistic logic programming: the probabilistic annotation-based
approach [18, 19, 1] and the probabilistic implication-based approach [12]. In the
framework proposed here, probabilities are expressed as intervals and they are
associated to facts and rules in a logic program in a manner similar to the one
proposed in the hybrid probabilistic programs framework of [1]. However, the
syntax of programs in our framework is different, as it allows the user to ex-
plicitly encode the knowledge about how to compose the probability intervals
associated to the same hybrid basic formulas derived from different rules in the
programs.

The semantics of programs in our framework is quite different from [1]. This
is because we employ the truth order while [1] uses the set inclusion order; we
believe that the use of truth order in our framework makes it more suitable for
reasoning about real-world applications. Furthermore, we believe this work lays
the foundations for a more general framework which is the parametric on the
choice of probability ordering. We make use of explicit composition functions to
compute the overall probability interval of hybrid basic formulas. Our usage of
truth order and composition functions of the disjunctive p-strategies is close to
[12]. However, HPP strictly subsumes the scheme of [12].

A topic of future research is to extend the new hybrid probabilistic programs
framework with non-monotonic negation, through an adaptation of the stable
model semantics and well-founded semantics to the framework proposed here.

References

1. A. Dekhtyar and V. S. Subrahmanian. Hybrid Probabilistic Program. Journal of
Logic Programming, 43(3):187-250, 2000.

2. M. Dekhtyar, A. Dekhtyar, and V. S. Subrahmanian. Hybrid Probabilistic Pro-
grams: Algorithms and Complexity. In Proc. of UAI Conference, pages 160-169,
1999.

3. W. F. Dowling and J. H. Gallier. Linear-Time Algorithms for Testing the Satisfi-
ability of Propositional Horn Formulae. Journal of Logic Programming, 3:267-284,
1984.

4. D. Dubois et al. Towards Possibilistic Logic Programming. ICLP, MIT Press, 1991.
5. M. C. Fitting. Logic Programming on A Topological Bilattice. Fundamenta Infor-

maticae, 11:209-218, 1988.

6. M.C. Fitting. Bilattices and The Semantics of Logic Programming. Journal of
Logic Programming, 11:91-16, 1991.

7. K. Kersting and L. De Raedt. Bayesian Logic Programs. In Inductive LP, 2000.

82 Emad Saad and Enrico Pontelli

8. M. Kifer and A. Li. On The Semantics of Rule-Based Expert Systems with Uncer-
tainty. In Intl. Conf. on Database Theory, 1988. Springer-Verlag.

9. M. Kifer and V. S. Subrahmanian. Theory of Generalized Annotated Logic Pro-
gramming and Its Applications. Journal of Logic Programming, 12:335-367, 1992.

10. N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for Probabilistic Planning.
Artificial Intelligence, 76(1-2):239-286, 1995.

11. V.S.L. Lakshmanan and F. Sadri. Modeling Uncertainty in Deductive Databases.
In Conf. on Database Expert Systems and Applications, 1994. Springer-Verlag.

12. V.S.L. Lakshmanan and F. Sadri. Probabilistic Deductive Databases. In Intl. Logic
Programming Symposium, 1994. MIT Press.

13. V.S.L. Lakshmanan and F. Sadri. Uncertain Deductive Databases: A Hybrid Ap-
proach. Information Systems, 22(8):483-508, December 1997.

14. V.S.L. Lakshmanan and N. Shiri. A Parametric Approach to Deductive Databases
with Uncertainty. IEEE TKDE, 13(4):554-570, 2001.

15. S.M. Leach and J.J. Lu. Query Processing in Annotated Logic Programming. Jour-
nal of Intelligent Information Systems, 6(1):33-58, 1996.

16. Y. Loyer and U. Straccia. The Approximate Well-founded Semantics for Logic
Programs with Uncertainty. In MFCS, 2003, Springer Verlag.

17. J.J. Lu et al. Computing Annotated Logic Programs. ICLP, MIT press, 1994.
18. R. T. Ng and V. S. Subrahmanian. Probabilistic Logic Programming. Information

and Computation, 101(2):150-201, December 1992.
19. R.T. Ng and V.S. Subrahmanian. A Semantical Framework for Supporting Sub-

jective and Conditional Probabilities in Deductive DBs. J. Automated Reasoning,
10(2), 1993.

20. R. T. Ng and V. S. Subrahmanian. Stable Semantics for Probabilistic Deductive
Databases. Information and Computation, 110(1):42-83, 1994.

21. T. Sato, Y. Kameya. PRISM: Language for Symbolic-Statistical Modeling. IJCAI,
1997.

22. E. Shapiro. Logic Programs with Uncertainties: A Tool for Implementing Expert
Systems. In Proc. of IJCAI, pages 529-532, 1983.

23. V. S. Subrahmanian. On The Semantics of Quantitative Logic Programs. In Symp.
on Logic Programming, pages 173-182, IEEE Computer Society, 1987.

24. M.H. van Emden. Quantitative Deduction and Its Fixpoint Theory. Journal of
Logic Programming, 4(1):37-53, 1986.

25. J. Vennekens and S. Verbaeten. A General View on Probabilistic Logic Program-
ming. In Belgian-Dutch Conference on AI, 2003.

Safe Programming with Pointers
Through Stateful Views�

Dengping Zhu and Hongwei Xi

Computer Science Department
Boston University

{zhudp,hwxi}@cs.bu.edu

Abstract. The need for direct memory manipulation through pointers is essential
in many applications. However, it is also commonly understood that the use (or
probably misuse) of pointers is often a rich source of program errors. Therefore,
approaches that can effectively enforce safe use of pointers in programming are
highly sought after. ATS is a programming language with a type system rooted in
a recently developed framework Applied Type System, and a novel and desirable
feature in ATS lies in its support for safe programming with pointers through a
novel notion of stateful views. In particular, even pointer arithmetic is allowed
in ATS and guaranteed to be safe by the type system of ATS. In this paper, we
give an overview of this feature in ATS, presenting some interesting examples
based on a prototype implementation of ATS to demonstrate the practicality of
safe programming with pointer through stateful views.

1 Introduction

The verification of program correctness with respect to specification is a highly signif-
icant problem that is ever present in programming. There have been many approaches
developed to address this fundamental problem (e.g., Floyd-Hoare logic [Hoa69,AO91],
model checking [EGP99]), but they are often too expensive to be put into general soft-
ware practice. For instance, Floyd-Hoare logic is mostly employed to prove the cor-
rectness of some (usually) short but often intricate programs, or to identify some subtle
problems in such programs. Though larger programs can be handled with the help of
automated theorem proving, it is still as challenging as it was to support Floyd-Hoare
logic in a realistic programming languages. On the other hand, the verification of type
correctness of programs, that is, type-checking, in languages such as ML and Java scales
convincingly in practice. However, we must note that the types in ML and Java are of
relatively limited expressive power when compared to Floyd-Hoare logic. Therefore,
we are naturally led to form type systems in which more sophisticated properties can
be captured and then verified through type-checking.

A heavy-weighted approach is to adopt a type system in which highly sophisticated
properties on programs can be captured. For instance, the type system of NuPrl [C+86]
based on Martin-Löf’s constructive type theory is such a case. In such a type system,

� Partially supported by NSF grant no. CCR-0229480

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 83–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 Dengping Zhu and Hongwei Xi

types are exceedingly expressive but type-checking often involves a great deal of theo-
rem proving and becomes intractable to automate. This is essentially an approach that
strongly favors expressiveness over scalability.

We adopt a light-weighted approach, introducing a notion of restricted form of de-
pendent types, where we clearly separate type index expressions from run-time expres-
sions. In functional programming, we have enriched the type system of ML with such
a form of dependent types, leading to the design of a functional programming language
DML (Dependent ML) [Xi98,XP99]. In imperative programming, we have designed a
programming language Xanadu with C-like syntax to support such a form of dependent
types. Along a different but closely related line of research, a new notion of types called
guarded recursive (g.r.) datatypes is recently introduced [XCC03]. Noting the close re-
semblance between the restricted form of dependent types (developed in DML) and
g.r. datatypes, we immediately initiated an effort to design a unified framework for both
forms of types, leading to the formalization of Applied Type System (ATS) [Xi03,Xi04].
We are currently in the process of designing and implementing ATS, a programming
language with its type system rooted in ATS . A prototype of ATS (with minimal doc-
umentation and many examples) is available on-line [Xi03]. Note that we currently use
the name ATS-style dependent types for the dependent types in ATS so as to distin-
guish them from the dependent types in Martin-Löf’s constructive type theory.

fun arrayAssign {a:type, n:nat} (A:array (a,n), B:array (a,n)): unit =
let

fun loop {i:nat | i <= n} (ind: int (i)): unit =
if ind < length A then

(set (B, ind, get (A, ind)); loop (ind + 1))
in

loop (0)
end

Fig. 1. A simple example in ATS

ATS is a comprehensive programming language designed to support a variety of
programming paradigms (e.g., functional programming, object-oriented programming,
imperative programming, modular programming, meta-programming), and the core of
ATS is a call-by-value functional programming language. In this paper, we are to focus
on the issue of programming with pointers in ATS.

As programming with dependent types is currently not a common practice, we use
a concrete example to give the reader some feel as to how dependent types can be used
to capture program invariants. In Figure 1, we implement a function arrayAssign that
assigns the content of one array to another array. The header in the definition of the
function arrayAssign means that arrayAssign is assigned the following type:

∀a : type.∀n : nat.(array(a, n), array(a, n))→ 1

We use 1 for the unit type, which roughly corresponds to the void type in C. Given a
type T and an integer I , we use array(T, I) as the type for arrays of size I in which
each element is assigned the type T . Therefore, the type given to arrayAssign indicates
that arrayAssign can only be applied to two arrays of the same size. The quantifications

Safe Programming with Pointers Through Stateful Views 85

∀a : type and ∀n : nat mean that a and n can be instantiated with any given type and
natural number, respectively. The inner function loop is assigned the following type:
∀i : nat.i ≤ n ⊃ (int(i) → 1). Given an integer I , we use int(I) as the singleton type
for I , that is, the only value of type int(I) equals I . The type given to loop means that
loop can only be applied to a natural number whose value is less than or equal to n,
which is the size of the arguments of arrayAssign. In ATS, we call i ≤ n a guard and
i ≤ n ⊃ (int(i) → 1) a guarded type. Also we point out that the function length is
given the following type:

length : ∀a : type.∀n : nat.array(a, n)→ int(n)

and the array subscripting function get and the array updating function set are given the
following types:

get : ∀a : type.∀n : nat.∀i : nat.i < n ⊃ ((array(a, n), int(i))→ a)
set : ∀a : type.∀n : nat.∀i : nat.i < n ⊃ ((array(a, n), int(i), a)→ 1)

which indicate that the index used to access an array must be within the bounds of the
array.

To support safe programming with pointers, a notion called stateful view is intro-
duced in ATS to model memory layout. Given a type T and an address L, we use T@L
for the (stateful) view indicating that a value of type T is stored at address L. This is
the only form of a primitive view and all other views are built on top of such primitive
views. For instance, we can form a view (T@L, T ′@(L + 1)) to mean that a value of
type T and another value of type T ′ are stored at addresses L and L + 1, respectively,
where we use L + 1 for the address immediately following L. A stateful view is similar
to a type, and it can be assigned to certain terms, which we often refer to as proof terms
(or simply proofs) of stateful views. We treat proofs of views as a form of resources,
which can be consumed as well as generated. In particular, the type theory on views is
based on a form of linear logic [Gir87].

Certain functions may require proofs of stateful views when applied and they may
cause stateful views to change when executed. For instance, the functions getVar and
setVar are given the following types:

getVar : ∀a : type.∀l : addr.(a@l | ptr(l))→ (a@l | a)
setVar : ∀a1 : type.∀a2 : type.∀l : addr.(a1@l | a2, ptr(l)) → (a2@l | 1)

where we use ptr(L) as the singleton type for the pointer pointing to a given address L.
The type assigned to getVar means that the function takes a proof of view T@L for

some type T and address L, and a value of type ptr(L), and then returns a proof of view
T@L and a value of type T . In this case, we say that a proof of view T@L is consumed
and another proof of view T@L is generated. We emphasize that proofs are only used
at compile-time for performing type-checking and they are neither needed nor available
at run-time. We use getVar here as the function that reads from a given pointer. Note
that the proof argument of getVar essentially assures that the pointer passed to getVar
cannot be a dangling pointer as the proof argument indicates that a value of certain type
is stored at the address to which the pointer points.

86 Dengping Zhu and Hongwei Xi

fun swap {t1:type, t2:type, l1:addr, l2:addr}
(pf1: t1 @ l1, pf2: t2 @ l2 | p1: ptr (l1), p2: ptr (l2))

: ’(t1 @ l2, t2 @ l1 | unit) =
let

val ’(pf1 | tmp1) = getVar (pf1 | p1)
val ’(pf2 | tmp2) = getVar (pf2 | p2)
val ’(pf1’ | _) = setVar (pf1 | p1, tmp2)
val ’(pf2’ | _) = setVar (pf2 | p2, tmp1)

in
’(pf2’, pf1’ | ’())

end

Fig. 2. A simple swap function

The type assigned to the function setVar can be understood in a similar manner:
setVar takes a proof of view T1@L for some type T1 and address L and a value of
type T2 for some type T2 and another value of type ptr(L), and then returns a proof of
view T2@L and the unit (of type 1). In this case, we say that a proof of view T1@L is
consumed and another proof of view T2@L is generated. Since we use setVar here as
the function that writes to a given address, this change precisely reflects the situations
before and after the function setVar is called: A value of type T1 is stored at L before
the call and a value of type T2 is stored at L after the call.

The functions allocVar and freeVar, which allocates and deallocates a memory unit,
respectively, are also of interest, and their types are given as follows:

allocVar : ()→ ∃l : addr.(top@l | ptr(l))
freeVar : ∀a : type.∀l : addr.(a@l | ptr(l))→ 1

We use top for the top type, that is, every type is a subtype of top. So when called,
allocVar returns a proof of view top@L for some address L and a pointer of type ptr(L).
The proof is needed if a write operation through the pointer is to be done. On the other
hand, a call to freeVar makes a pointer no longer accessible.

As an example, a function is implemented in Figure 2 that swaps the contents stored
at two (distinct) addresses. We use ′(. . .) to form tuples, where the quote symbol (′) is
solely for the purpose of parsing. For instance, ′() stands for the unit (i.e., the tuple of
length 0). Also, the bar symbol (|) is used as a separator (like the comma symbol (,)).

Note that proofs are manipulated explicitly in the above implementation, and this
could be burdensome to a programmer. In ATS we also allow certain proofs be con-
sumed and generated implicitly. For instance, the function in Figure 2 may also be
implemented as follows in ATS:

fun swap {t1:type, t2:type, l1:addr, l2:addr}
(pf1: t1 @ l1, pf2: t2 @ l2 | p1: ptr (l1), p2: ptr (l2))

: ’(t1 @ l2, t2 @ l1 | unit) =
let val tmp := !p1 in p1 := !p2; p2 := tmp end

where we use ! for getVar and := for setVar and deal with proofs in an implicit manner.
The primary goal of the paper is to make ATS accessible to a wider audience who

may or may not have adequate formal training in type theory. We are thus intentionally
to avoid presenting the (intimidating) theoretical details on ATS as much as possible,

Safe Programming with Pointers Through Stateful Views 87

striving for a clean and intuitive introduction to the use of stateful views in support
of safe programming with pointers. For the reader who is interested in the technical
development of ATS, please refer to [Xi03] for further details. Also, there is a prototype
implementation of ATS as well as many interesting examples available on-line [Xi03].

We organize the rest of the paper as follows. In Section 2, we give brief explana-
tion on some (uncommon) forms of types in ATS. We then present some examples in
Section 3, showing how programming with pointers is made safe in ATS. We mention
some related work in Section 4 and conclude in Section 5.

2 ATS/SV in a Nutshell

In this section, we present a brief overview of ATS/SV, the type system that supports
imperative programming (with pointers) in ATS. As an applied type system, there are
two components in ATS/SV: static component (statics) and dynamic component (dy-
namics). Intuitively, the statics and dynamics are each for handling types and programs,
respectively, and we are to focus on the statics of ATS/SV.

sorts σ ::= addr | bool | int | type
static contexts Σ ::= ∅ | Σ, a : σ
static addr. L ::= a | l | L + I
static int. I ::= a | i | cI(s1, . . . , sn)
static prop. P ::= a | b | cP (s1, . . . , sn) | ¬P | P1 ∧ P2 | P1 ∨ P2 | P1 ⊃ P2

types T ::= a | δ(s) | (V | T) → CT | P ⊃ T | ∀a : σ.T | P ∧ T | ∃a : σ.T

computation types CT ::= ∃Σ, P .(V | T)

stateful views V ::=
 | T@L | δ(s) | V1−◦ V2 | V1 ⊗ V2

Fig. 3. The syntax for the statics of ATS/SV

The syntax for the statics of ATS/SV is given in Figure 3. The statics itself is a
simply typed language and a type in it is called a sort. We assume the existence of the
following basic sorts in ATS/SV : addr, bool, int and type; addr is the sort for addresses,
and bool is the sort for boolean constants, and int is the sort for integers, and type is the
sort for types (which are to be assigned to dynamic terms, i.e., programs). We use a for
static variables, l for address constants l0, l1, . . ., b for boolean values tt and ff, and i for
integers 0,−1, 1, A term s in the statics is called a static term, and we use Σ � s : σ
to mean that s can be assigned the sort σ under Σ. The rules for assigning sorts to
static terms are all omitted as they are completely standard. We may also use L, P, I, T
for static terms of sorts addr, bool, int, type, respectively. We assume some primitive
functions cI when forming static terms of sort int; for instance, we can form terms such
as I1 + I2, I1 − I2, I1 ∗ I2 and I1/I2. Also we assume certain primitive functions cP

when forming static terms of sort bool; for instance, we can form propositions such as
I1 ≤ I2 and I1 ≥ I2, and for each sort σ we can form a proposition s1 =σ s2 if s1

and s2 are static terms of sort σ; we may omit the subscript σ in =σ if it can be readily
inferred from the context. In addition, given L and I , we can form an address L + I ,
which equals ln+i if L = ln and I = i and n + i ≥ 0.

88 Dengping Zhu and Hongwei Xi

We use s for a sequence of static terms, and P , T and V for sequences of proposi-
tions, types and views, respectively, and ∅ for the empty sequence.

We use ST for a state, which is a finite mapping from addresses to values, and
dom(ST) for the domain of ST. We say that a value v is stored at l in ST if ST(l) = v.
Note that we assume that every value takes one memory unit to store, and this, for
instance, can be achieved through proper boxing. Given two states ST1 and ST2, we
write ST1 ⊗ ST2 for the union of ST1 and ST2 if dom(ST1) ∩ dom(ST2) = ∅. We write
ST : V to mean that the state ST meets the view V. We now present some intuitive
explanation on certain forms of views and types.

– We use � for the empty view, which is met by the empty state, that is, the state
whose domain is empty.

– We use δ for a view constructor and write � δ(σ1, . . . , σn) to mean that apply-
ing δ to static terms s1, . . . , sn of sorts σ1, . . . , σn, respectively, generates a view
δ(s1, . . . , sn). There are certain view proof constructors c associated with each δ,
which are assigned views of the form ∀Σ, P.(V)−◦ δ(s). For example, the (recur-
sively defined) view constructor arrayView in Figure 6 (in Section 3) forms a view
arrayView(T, I, L) when applied to a type T , an integer I and an address L; the
two proof constructors associated with arrayView are ArrayNone and ArraySome.

– Given L and T , we can form a primitive view T@L, which is met by the state that
maps L to a value of type T .

– Given V1 and V2, a state ST meets V1−◦ V2 if ST1 ⊗ ST meets V2 for any state
ST1 : V1 such that dom(ST1) ∩ dom(ST) = ∅.

– Given V1 and V2, a state ST meets V1 ⊗ V2 if ST = ST1 ⊗ ST2 for some ST1 : V1

and ST2 : V2.
– In general, we use δ(s) for primitive types in ATS/SV. For instance, top is the top

type, that is, every type is a subtype of top; 1 is the unit type; ptr(L) is a singleton
type containing the only address equal to L, and we may also refer to a value of
type ptr(L) as a pointer (pointing to L); bool(P) is a singleton type containing the
only boolean value equal to P ; int(I) is a singleton type containing the only integer
equal to I .

– (V | T) → CT is a type for (dynamic) functions that can be applied to values of
type T only if the current state (when the application occurs) meets the views V ,
and such an application yields a dynamic term that can be assigned the computation
type CT of the form ∃Σ′, P

′
.(V

′ | T ′), which intuitively means that the dynamic
term is expected to evaluate to value v at certain state ST such that for some static
substitution Θ, each proposition in P

′
[Θ] is true, v is of type T ′[Θ] and ST meets

V′[Θ]. In the following presentation, we use T1 → T2 as a shorthand for (∅ | T1)→
∃∅, ∅.(∅ | T2) and call it a stateless function type.

– P ⊃ T is called a guarded type and P∧T is called an asserting type. As an example,
the following type is for a function from natural numbers to negative integers:

∀a : int.a ≥ 0 ⊃ (int(a) → ∃a′ : int.(a′ < 0) ∧ int(a′))

The guard a ≥ 0 indicates that the function can only be applied to an integer that is
greater than or equal to 0; the assertion a′ < 0 means that each integer returned by
the function is negative.

Safe Programming with Pointers Through Stateful Views 89

Σ;P |= T ≤tp top Σ; P |= T ≤tp T

Σ;P |= T1 ≤tp T2 Σ; P |= T2 ≤tp T3

Σ; P |= T1 ≤tp T3

� δ(σ1, . . . , σn) Σ; P |= si ≡σi s′i for 1 ≤ i ≤ n

Σ;P |= δ(s1, . . . , sn) ≤tp δ(s′1, . . . , s′n)

Σ; P ; V
′ |= ⊗(V) Σ;P |= T ′ ≤tp T Σ; P |= CT ≤ct CT′

Σ;P |= (V | T) → CT ≤tp (V
′ | T ′) → CT′

Σ; P � (V | T) → CT ≤tp (V , V | T) → CT[V]
(ext)

Σ;P , P ′ |= P Σ;P , P ′ |= T ≤tp T ′

Σ; P |= P ⊃ T ≤tp P ′ ⊃ T ′
Σ, a : σ; P |= T ≤tp T ′

Σ; P |= ∀a : σ.T ≤tp ∀a : σ.T ′

Σ;P , P |= P ′ Σ; P, P |= T ≤tp T ′

Σ; P |= P ∧ T ≤tp P ′ ∧ T ′
Σ, a : σ; P |= T ≤tp T ′

Σ;P |= ∃a : σ.T ≤tp ∃a : σ.T ′

Σ, Σ0;P , P 0 |= P
′
0 Σ, Σ0;P , P 0; V |= ⊗(V

′
) Σ,Σ0;P , P 0 |= T ≤tp T ′

Σ;P |= ∃Σ0, P 0.(V | T) ≤ct ∃Σ0, P
′
0.(V

′ | T ′)

Fig. 4. The subtype rules

There are two forms of constraints in ATS/SV : Σ; P |= P (persistent) and Σ; P ;V |= V
(ephemeral), which are needed to define type equality. Generally speaking, we use in-
tuitionistic logic and intuitionistic linear logic to reason about persistent and ephemeral
constraints, respectively. We may write Σ; P |= P 0 to mean that Σ; P |= P holds for
every P in P 0. Most of the rules for proving persistent constraints are standard and thus
omitted. For instance, the following rules are available:

Σ;P, P |= P

Σ;P ,¬P |= ff

Σ; P |= P

Σ;P, P1 |= P2

Σ;P |= P1 ⊃ P2

Σ;P |= P1 ⊃ P2 Σ; P |= P1

Σ; P |= P2

We introduce a subtype relation T1 ≤tp T2 on static terms of sort type and define
the type equality T1 =type T2 to be T1 ≤tp T2 ∧ T2 ≤tp T1. A subtype judgment is of
the form Σ; P |= T1 ≤tp T2, and the rules for deriving such a judgment are given in
Figure 4, where the obvious side conditions associated with certain rules are omitted.
Note that ⊗(V) is defined to be � if V is empty or V1 ⊗ . . .⊗ Vn if V = V1, . . . , Vn

for some n ≥ 1. In the rule (ext), we write CT[V] for ∃Σ, P.(V , V | T), where CT
is ∃Σ, P.(V | T) and no free variables in V occur in Σ. For those who are familiar
with separation logic [Rey02], we point out that this rule essentially corresponds to the
frame rule there. The rule (ext) is essential: For instance, suppose the type of a function
is (V | T) → CT and the current state meets the view ⊗(V 0) such that V 0 = V 1, V
and ∅; ∅;V 1 |= ⊗(V) is derivable. In order to apply the function at the current state,
we need to assign the type (V , V | T) → CT[V] to the function so that the view V can
be “carried over”. This can be achieved by an application of the rule (ext).

Some of the rules for proving ephemeral constraints are given in Figure 5, and the
rest are associated with primitive view constructors. Given primitive view constructor δ
with proof constructors c1, . . . , cn, we introduce the following rule for each ci,

90 Dengping Zhu and Hongwei Xi

Σ;P |= T ≤tp T ′

Σ;P ; T@L |= T ′@L Σ; P ; ∅ |=

Σ;P ;V |= V

Σ;P ;V ,
 |= V

Σ; P ; V 1 |= V1 Σ; P ; V 2 |= V2

Σ; P ; V 1,V 2 |= V1 ⊗ V2

Σ;P ;V , V1, V2 |= V

Σ; P ; V , V1 ⊗ V2 |= V

Σ;P ;V , V1 |= V2

Σ;P ;V |= V1−◦ V2

Σ; P ; V 1 |= V1−◦ V2 Σ; P ;V 2 |= V1

Σ; P ; V 1,V 2 |= V2

� δ(σ1, . . . , σn) Σ; P |= si ≡σi s′i for 1 ≤ i ≤ n

Σ; P ; δ(s1, . . . , sn) |= δ(s′1, . . . , s′n)

Σ;P [a �→ i];V [a �→ i] � V[a �→ i] for every integer i

Σ, a : int; P ; V � V

Fig. 5. Some rules for ephemeral constraints

dataview arrayView (type, int, addr) =
| {a:type, l:addr} ArrayNone (a, 0, l)
| {a:type, n:nat, l:addr}

ArraySome (a, n+1, 1) of (a @ l, arrayView (a, n, l+1)

Fig. 6. An dataview for arrays

Σ � Θ : Σ0 Σ |= P 0[Θ] Σ;P ;V |= ⊗(V i[Θ])

Σ;P ;V |= δ(si[Θ])

where we assume that ci is assigned the following view: ∀Σi, P i.(V i)−◦ δ(si); in ad-
dition, we introduce the following rule:

Σ,Σi; P, P i, s = si;V ,V i |= V for 1 ≤ i ≤ n

Σ;P ;V , δ(s) |= V

The key point we stress here is that both the persistent and ephemeral constraint rela-
tions can be formally defined.

3 Examples

3.1 Arrays

Array is probably the most commonly used data structure in programming. We declare
in Figure 6 a dataview for representing arrays. Given a type T , an integer I and an
address L, arrayView(T, I, L) is a view for an array pictured as follows,

eltI−1elt1elt0

L L+I−1L+1 L+2 . . .

. . .

Safe Programming with Pointers Through Stateful Views 91

such that (1) each element of the array is of type T , (2) the length of the array is I and
(3) the array starts at address L and ends at address L+ I − 1.There are two view proof
constructors ArrayNone and ArraySome associated with the view arrayView, which are
assigned the following functional views:

ArrayNone : ∀a : type.∀l : addr.()−◦ arrayView(a, 0, l)
ArraySome : ∀a : type.∀l : addr.∀n : nat.(a@l, arrayView(a, n, l + 1))−◦ arrayView(a, n + 1, l)

For instance, the view assigned to ArraySome means that an array of size I +1 contain-
ing elements of type T is stored at address L if an value of type T is stored at L and an
array of size I containing values of type T is stored at L + 1.

fun getFirst {a:type, n:int, l:addr | n > 0}
(pf: arrayView (a,n,l) | p: ptr(l)): ’(arrayView (a,n,l) | a) =

let
prval ArraySome (pf1, pf2) = pf
// pf1: a@l and pf2: arrayView (a,n-1,l+1)
val ’(pf1’ | x) = getVar (pf1 | p)
// pf1’: a@l

in
’(ArraySome (pf1’, pf2) | x)

end

Fig. 7. A simple function on arrays

We now implement a simple function getFirst in Figure 7 that takes the first element
in a nonempty array. The header of the function getFirst indicates that the following type
is assigned to it:

∀a : type.∀n : int.∀l : addr.n > 0 ⊃ ((arrayView(a, n, l) | ptr(l)) → (arrayView(a, n, l) | a))

The (unfamiliar) syntax in the body of getFirst needs some explanation: pf is a proof of
the view arrayView(a, n, l), and it must be of the form ArraySome(pf1, pf2), where pf1
and pf2 are proofs of views a@l and arrayView(a, n− 1, l + 1), respectively; recall that
the function getVar is assumed to be of the following type:

∀a : type.∀l : addr.(a@l | ptr(l)) → (a@l | a)

which simply means that applying getVar to a pointer of type ptr(L) requires a proof
of T@L for some type T and the application returns a value of type T as well as a
proof of T@L; thus pf ′1 is also a proof of a@l and ArraySome(pf ′1, pf2) is a proof of
arrayView(a, n, l). In the definition of getFirst, we have both code for dynamic compu-
tation and code for static manipulation of proofs of views, and the latter is to be erased
before dynamic computation starts.

3.2 Singly-Linked Lists

We can declare a dataview for representing singly-linked list segments in Figure 8. Note
that we write (T0, · · · , Tn)@L for a sequence of views: T0@(L + 0), · · · , Tn@(L + n).
Given a type T , an integer I and two addresses L1 and L2, slseg(T, I, L1, L2) is a view
for a singly-linked list segment pictured as follows:

92 Dengping Zhu and Hongwei Xi

2 L

1 L
. . .

nelt2elt1elt

where (1) each element in the segment is of type T , (2) the length of the segment is n and
(3) the segment starts at L1 and ends at L2. A singly-linked list is simply a special kind
of singly-linked list segment that ends with a null pointer, and this is clearly reflected
in the definition of the view constructor sllist presented in Figure 8.

dataview slseg (type, int, addr, addr) =
| {a:type, l:addr} SlsegNone (a, 0, l, l)
| {a:type, n:nat, first, next, last | first <> null}
SlsegSome (a, n+1, first, last) of

((a, ptr (next)) @ first, slseg (a, n, next, last))

viewdef sllist (a, n, l) = slseg (a, n, l, null)

Fig. 8. A dataview for singly-linked list segments

We now present an interesting example in Figure 9. The function array2sllist in
the upper part of the figure turns an array into a singly-linked list. To facilitate under-
standing, we also present in the lower part of the figure a corresponding function im-
plemented in C. If we erase the types and proofs in the implementation of array2sllist
in ATS, then the implementation is tail recursive and tightly corresponds to the loop in
the implementation in C. What is remarkable here is that the type system of ATS can
guarantee the memory safety of array2sllist (even in the presence of pointer arithmetic).

3.3 A Buffer Implementation

We present an implementation of buffers based on linked lists in this section. We first
define a view constructor bufferView as follows:

viewdef bufferView (a:type, m:int, n:int, first: addr, last: addr) =
’(slseg (a, m, first, last), slseg (top, n-m, last, first))

where m and n represent the number of elements stored in a buffer and the maximal
buffer size, respectively. For instance, such a buffer can be pictured as follows:

.
first

last

elt 1 elt 2 elt m

where we use • for uninitialized or discarded content. In the above picture, we see that
a buffer of maximal size n consists of two list segments: one with length m, which

Safe Programming with Pointers Through Stateful Views 93

fun array2sllist {l:addr, n:nat | n >= 1, l <> null}
(pf: arrayView (top, n+n, l) | p: ptr(l), s: int(n))
: ’(sllist (top, n, l) | unit) =
if s ieq 1 then

let
prval ArraySome (pf0, ArraySome (pf1, ArrayNone)) = pf
val ’(pf1 | _) = setVar (pf1 | p + 1, null)

in
’(SlsegSome (’(pf0, pf1), SlsegNone) | ’())

end
else

let
prval ArraySome (pf0, ArraySome (pf1, pf)) = pf
val ’(pf1 | _) = setVar (pf1 | p + 1, p + 2)
val ’(rest | _) = array2sllist (pf | p + 2, s - 1)

in
’(SlsegSome (’(pf0, pf1), rest) | ’())

end

///

/* The following program in C corresponds the above one in ATS */

typedef struct slseg { int val; struct slseg * next; } slseg;

void array2sllist (int* p, int size) {
int s;

for (s = size; s > 1; s = s - 1) { *(p+1) = p+2; p = p+2; }

(p+1) = 0; / assign the null pointer */
}

Fig. 9. Converting an array into a singly-linked list

contains the values that are currently placed in the buffer, starts at address first and
ends at last, and we call it the occupied segment; the other with length (n−m), which
contains all free cells in this buffer, starts at last and ends at first, and we call it free
segment. The address first is often viewed as the head of a buffer.

In Figure 10, we present a function addIn that inserts an element into a buffer and
another function takeOut that removes an element from a buffer. The header of the
function addIn indicates that the following type is assigned to it,

∀a : type.∀m : nat.∀n : nat.∀l1 : addr.∀l2 : addr.m < n ⊃
(bufferView(a, m, n, l1, l2) | a, ptr(l2)) → ∃l3 : addr.(bufferView(a, m + 1, n, l1, l3) | ptr(l3))

which simply means that inserting into a buffer requires that the buffer is not full and, if
it succeeds, the application increases the length of occupied segment by one and returns
a new ending address for occupied segment (a.k.a. the new starting address for free
segment). Similarly, the following type is assigned to the function takeOut,

∀a : type.∀m : nat.∀n : nat.∀l1 : addr.∀l2 : addr.m ≤ n ∧ m > 0 ⊃
(bufferView(a, m, n, l1, l2) | ptr(l1)) → ∃l3 : addr.(bufferView(a, m − 1, n, l3, l2) | a, ptr(l3))

which means that removing an element out of a buffer requires that the buffer is not
empty and, if it succeeds, the application decreases the length of occupied segment by

94 Dengping Zhu and Hongwei Xi

fun addIn {a:type, m: nat, n:nat, first:addr, last:addr | m < n}
(pf: bufferView (a, m, n, first, last) | x: a, t: ptr(last))

: [last’:addr]
’(bufferView (a, m+1, n, first, last’) | ptr (last’)) =

let
prval ’(pf0, pf1) = pf
prval SlsegSome (’(pf100, pf101), pf11) = pf1
val ’(pf100 | _) = setVar (pf100 | t, x)
val ’(pf101 | p) = getVar (pf101 | t + 1)
prval pf0 =

slsegAppend (pf0, SlsegSome (’(pf100, pf101), SlsegNone))
in
’(’(pf0, pf11) | p)

end

fun takeOut {a:type, m:nat, n:nat, first:addr, last:addr | m>0, n>=m}
(pf: bufferView (a, m, n, first, last) | h: ptr(first))

: [first’:addr]
’(bufferView (a, m-1, n, first’, last) | ’(a, ptr(first’))) =

let
prval ’(pf0, pf1) = pf
prval SlsegSome (’(pf000, pf001), pf01) = pf0
val ’(pf000 | x) = getVar (pf000 | h)
val ’(pf001 | p) = getVar (pf001 | h + 1)
prval pf1 =

slsegAppend (pf1, SlsegSome (’(pf000, pf001), SlsegNone))
in
’(’(pf01, pf1) | ’(x, p))

end

Fig. 10. Two functions on cyclic buffers

one and returns the element and a new starting address for occupied segment (a.k.a the
new ending address for free segment). In addition, from the type of function takeOut,
we can see that there is no need to fix the position of the buffer head and, in fact, the
head of a buffer moves along the circular list if we keep taking elements out of that
buffer.

The function slsegAppend is involved in the implementation of addIn and takeOut.
This is a proof function that combines two list segment views into one list segment
view, and it is assigned the following functional view:

∀a : type.∀n1 : nat.∀n2 : nat.∀l1 : addr.∀l2 : addr.∀l3 : addr.
(slseg(a, n1, l1, l2), slseg(a, n2, l2, l3))−◦ slseg(a, n1 + n2, l1, l3)

Note that this function is only used for type-checking at compile-time and is neither
needed nor available at run-time.

3.4 Other Examples

In addition to arrays and singly-linked lists, we have also handled a variety of other
data structures such as doubly-linked lists and doubly-linked binary trees that make
(sophisticated) use of pointers. Some of the examples involving such data structures
(e.g., a splay tree implementation based on doubly-linked binary trees) can be found
on-line [Xi03].

Safe Programming with Pointers Through Stateful Views 95

4 Related Work

A fundamental problem in programming is to find approaches that can effectively facil-
itate the construction of safe and reliable software. In an attempt to address this prob-
lem, studies on program verification, that is, verifying whether a given program meets
its specification, have been conducted extensively.

Some well-known existing approaches to program verification include model check-
ing (which is the algorithmic exploration of the state spaces of finite state models of sys-
tems), program logics (e.g., Floyd-Hoare logic), type theory, etc. However, both model
checking and Floyd-Hoare logic are often too expensive to be put into software practice.
For instance, although model checking has been used with great success in hardware
verification for more than twenty years, its application in software is much less com-
mon and the focus is often on verifying programs such as device drivers that are closely
related to hardware control. In particular, model checking suffers from problems such
as state space explosion and highly non-trivial abstraction and is thus difficult to scale
in practice. There are also many cases reported in the literature that make successful use
of program logics in program verification. As (a large amount of) theorem proving is
often involved, such program verification is often too demanding for general practice.

On the other hand, the use of types in program error detection is ubiquitous. How-
ever, the types in programming languages such as ML and Java are often too limited
for capturing interesting program invariants. Our work falls naturally in between full
program verification, either in type theory or systems such as PVS, and traditional type
systems for programming languages. When compared to verification, our system is less
expressive but much more automatic. Our work can be viewed as providing a systematic
and uniform language interface for a verifier intended to be used as a type system dur-
ing the program development cycle. Our primary motivation is to all the programmer to
express more program properties through types and thus catch more program errors at
compile-time.

In Dependent ML (DML), a restricted form of dependent types is proposed that
completely separates programs from types. This design makes it rather straightforward
to support realistic programming features such as general recursion and effects in the
presence of dependent types. Subsequently, this restricted form of dependent types is
employed in designing Xanadu [Xi00] and DTAL [XH01] in attempts to reap simi-
lar benefits from dependent types in imperative programming. In hindsight, it can be
readily noticed that the type systems of Xanadu and DTAL bear a close relation to
Floyd-Hoare logic.

Along another line of research, a new notion of types called guarded recursive (g.r.)
datatypes is recently introduced [XCC03]. Noting the close resemblance between the
restricted form of dependent types (developed in DML) and g.r. datatypes, we imme-
diately initiate an effort to design a unified framework for both forms of types, lead-
ing to the design and formalization of the framework Applied Type System. To sup-
port safe programming with pointers, the framework is further extended with stateful
views [Xi03].

Also, the work in [OSSY02] is casually related to this paper as it shares the same
goal of ruling out unsafe memory accesses. However, the underlying methodology
adopted there is fundamentally different. In contrast to the static approach we take, it

96 Dengping Zhu and Hongwei Xi

essentially relies on run-time checks to prevent dangling pointers from being accessed
as well as to detect stray array subscripting.

There have been a great number of research activities on verifying program safety
properties by tracking state changes. For instance, Cyclone [JMG+01] allows the pro-
grammer to specify safe stack and region memory allocation; both CQual [FTA02] and
Vault [FD02] support some form of resource usage protocol verification; ESC [Det96]
enables the programmer to state various sorts of program invariants and then employs
theorem proving to prove them; CCured [NMW02] uses program analysis to show the
safety of mostly unannotated C programs. In [MWH03], we also see an attempt to de-
velop a general theory of type refinements for reasoning about program states.

5 Conclusion

Despite a great deal of research, it is still largely an elusive goal to verify the correctness
of programs. Therefore, it is important to identify the properties that can be practically
verified for realistic programs. We have shown with concrete examples the use of a re-
stricted form of dependent types combined with stateful views in facilitating program
verification in the presence of pointer arithmetic. A large number of automated program
verification approaches often focus on verifying sophisticated properties of some par-
ticularly chosen programs. We feel that it is at least equally important to study scalable
approaches to verifying elementary properties of programs in general programming as
we have advocated in this paper.

In general, we are interested in promoting the use of light-weighted formal methods
in practical programming, facilitating the construction of safe and reliable software. We
have presented some examples in this paper in support of such a promotion, demon-
strating a novel approach to safe programming with pointers.

References

[AO91] Krzysztof R. Apt and Olderog, E.-R. Verification of Sequential and Concurrent Pro-
grams. Springer-Verlag, New York, 1991. ISBN 0-387-97532-2 (New York) 3-540-
97532-2 (Berlin). xvi+441 pp.

[C+86] Robert L. Constable et al. Implementing Mathematics with the NuPrl Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986. ISBN 0-13-
451832-2. x+299 pp.

[Det96] David Detlefs. An overview of the extended static checking system. In Workshop on
Formal Methods in Software Practice, 1996.

[EGP99] E.M.Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[FD02] M. Fahndrich and R. Deline. Adoption and Focus: Practical Linear Types for Im-

perative Programming. In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 13–24. Berlin, June 2002.

[FTA02] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive Type Qualifiers. In ACM Con-
ference on Programming Language Design and Implementation, pages 1–12. Berlin,
June 2002.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580 and 583, October 1969.

Safe Programming with Pointers Through Stateful Views 97

[JMG+01] Trevor Jim, Greg Morrisett, Dan Grossman, Mike Hicks, Mathieu Baudet, Matthew
Harris, and Yanling Wang. Cyclone, a Safe Dialect of C, 2001. URL http://
www.cs.cornell.edu/Projects/cyclone/. Available at
http://www.cs.cornell.edu/Projects/cyclone/.

[MWH03] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of type
refinements. In Proceedings of the Eighth ACM SIGPLAN International Conference
on Functional Programming, pages 213–226. Uppsala, Sweden, September 2003.

[NMW02] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In Proceedings of the 29th ACM Symposium on Prin-
ciples of Programming Languages, pages 128–139. London, January 2002.

[OSSY02] Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-safe
ansi-c compiler: An approach to making c programs secure (progress report). In
International Symposium on Software Security, volume 2609 of Lecture Notes in
Computer Science. Springer-Verlag, November 2002.

[Rey02] John Reynolds. Separation Logic: a logic for shared mutable data structures. In
Proceedings of 17th IEEE Symposium on Logic in Computer Science (LICS ’02),
2002. URL citeseer.nj.nec.com/reynolds02separation.html.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded Recursive Datatype Con-
structors. In Proceedings of the 30th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 224–235. New Orleans, LA, January 2003.

[XH01] Hongwei Xi and Robert Harper. A Dependently Typed Assembly Language. In
Proceedings of International Conference on Functional Programming, pages 169–
180, September 2001.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, 1998. viii+181 pp. pp. viii+189. Available at
http://www.cs.cmu.edu/˜hwxi/DML/thesis.ps.

[Xi00] Hongwei Xi. Imperative Programming with Dependent Types. In Proceedings of
15th IEEE Symposium on Logic in Computer Science, pages 375–387. Santo Bar-
bara, CA, June 2000.

[Xi03] Hongwei Xi. Applied Type System, July 2003. Available at:
http://www.cs.bu.edu/˜hwxi/ATS.

[Xi04] Hongwei Xi. Applied Type System (extended abstract). In post-workshop Proceed-
ings of TYPES 2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

[XP99] Hongwei Xi and Frank Pfenning. Dependent Types in Practical Programming. In
Proceedings of 26th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 214–227. San Antonio, Texas, January 1999.

Towards Provably Correct Code Generation
via Horn Logical Continuation Semantics�

Qian Wang1, Gopal Gupta1, and Michael Leuschel2

1 Department of Computer Science
University of Texas at Dallas, Richardson, TX 75083-0688 USA

{qxw015000,gupta}@utdallas.edu
2 Department of Electronics and Computer Science

University of Southampton, Southampton, UK S017 1BJ
mal@ecs.soton.ac.uk

Abstract. Provably correct compilation is an important aspect in de-
velopment of high assurance software systems. In this paper we explore
approaches to provably correct code generation based on programming
language semantics, particularly Horn logical semantics, and partial eval-
uation. We show that the definite clause grammar (DCG) notation can
be used for specifying both the syntax and semantics of imperative lan-
guages. We next show that continuation semantics can also be expressed
in the Horn logical framework.

1 Introduction

Ensuring the correctness of the compilation process is an important considera-
tion in construction of reliable software. If the compiler generates code that is
not faithful to the original program code of a system, then all our efforts spent
in proving the correctness of the system could be futile. Proving that target
code is correct w.r.t. the program source is especially important for high assur-
ance systems, as unfaithful target code can lead to loss of life and/or property.
Considerable research has been done in this area, starting from the work of Mc-
Carthy [18]. Most efforts directed at proving compiler correctness fall into three
categories:

– Those that treat the compiler as just another program and use standard
verification techniques to manually or semi-automatically establish its cor-
rectness (e.g., [3]). However, even with semi-automation this is a very labour
intensive and expensive undertaking, which has to be repeated for every new
language, or if the compiler is changed.

� The authors have been partially supported by NSF grants CCR 9900320, INT
9904063, and EIA 0130847, by the Department of Education and the Environmen-
tal Protection Agency, and by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the IST-2001-
38059 ASAP project.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 98–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Provably Correct Code Generation 99

– Those that generate the compiler automatically from the mathematical se-
mantics of the language. Typically the semantics used is denotational (see
for example Chapter 10 of [23]). The automatically generated compilers,
however, have not been used in practice due to their slowness and/or ineffi-
ciency/poor quality of the code generated.

– Those that use program transformation systems to transform source code
into target code [16, 20]. The disadvantage in this approach is that speci-
fying the compiler operationally can be quite a lengthy process. Also, the
compilation time can be quite large.

In [6] we developed an approach for generating code for imperative languages
in a provably correct manner based on partial evaluation and a type of seman-
tics called Horn logical semantics. This approach is similar in spirit to semantics-
based approaches, however, its basis is Horn-logical semantics [6] which possesses
both an operational as well as a denotational (declarative) flavor. In the Horn
logical semantics approach, both the syntax and semantics of a language is spec-
ified using Horn logic statements (or pure Prolog).

Taking an operational view, one immediately obtains an interpreter of the
language L from the Horn-logical semantic description of the language L. The
semantics can be viewed dually as operational or denotational. Given a program
P written in language L, the interpreter obtained for L can be used to execute
the program. Moreover, given a partial evaluator for pure Prolog, the interpreter
can be partially evaluated w.r.t. the program P to obtain compiled code for P .
Since the compiled code is obtained automatically via partial evaluation of the
interpreter, it is faithful to the source of P , provided the partial evaluator is
correct. The correctness of the partial evaluator, however, has to be proven only
once. The correctness of the code generation process for any language can be
certified, provided the compiled code is obtained via partial evaluation. Given
that efficient execution engines have been developed for Horn Logic (pure Pro-
log), partial evaluation is relatively fast. Also, the declarative nature of the Horn
logical semantics allows for language semantics to be rapidly obtained.

In this paper, we further develop our approach and show that in Horn logical
semantics not only the syntax but also the semantics can be expressed using
the definite clause grammar notation. The semantics expressed in the DCG no-
tation allows for the store argument to be naturally (syntactically) hidden. We
show that continuation semantics can also be expressed in Horn logic. Continua-
tion semantics model the semantics of imperative constructs such as goto state-
ments, exception handling mechanisms, abort, and catch/throw constructs more
naturally. We also show that continuation semantics expressed as DCGs can be
partially evaluated w.r.t. a source program to obtain “good quality” target code.

In this work we use partial evaluation to generate target code. Partial evalu-
ation is especially useful when applied to interpreters; in this setting the static
input is typically the object program being interpreted, while the actual call to
the object program is dynamic. Partial evaluation can then produce a more ef-
ficient, specialized version of the interpreter, which can be viewed as a compiled
version of the object program [5].

100 Qian Wang, Gopal Gupta, and Michael Leuschel

In our work we have used the logen system [14]. Much like Mixtus, lo-
gen can handle many non-declarative aspects of Prolog. logen also supports
partially static data by allowing the user to declare custom “binding types.”
More details on the logen system can be found elsewhere [14]. Unlike Mixtus,
logen is a so-called offline partial evaluator, i.e., specialization is divided into
two phases: (i) A binding-time analysis (BTA for short) phase which, given a
program and an approximation of the input available for specialization, approx-
imates all values within the program and generates annotations that steer (or
control) the specialization process. (ii) A (simplified) specialization phase, which
is guided by the result of the BTA.
Because of the preliminary BTA, the specialization process itself can be per-
formed very efficiently, with predictable results (which is important for our appli-
cation). Moreover, due to its simplicity it is much easier to establish correctness
of the specialization process.

Finally, while our work is motivated by provably correct code generation, we
believe our approach to be useful to develop “ordinary” compilers for domain
specific languages in general [8].

2 Horn Logical Semantics

The denotational semantics of a language L has three components: (i) syntax
specification: maps sentences of L to parse trees; it is commonly specified as a
grammar in the BNF format; (ii) semantic algebra: represents the mathemat-
ical objects whose elements are used for expressing the meaning of a program
written in the language L; these mathematical objects typically are sets or do-
mains (partially ordered sets, lattices, etc.) along with associated operations to
manipulate the elements of the sets; (iii) valuation functions: these are functions
mapping parse trees to elements of the semantic algebras.

Traditional denotational definitions express syntax as BNF grammars, and
the semantic algebras and valuation functions using λ-calculus. In Horn Logi-
cal semantics, Horn-clauses (or pure Prolog) and constraints1 are used instead
to specify all the components of the denotational semantics of programming
languages [6]. There are three major advantages of using Horn clauses and con-
straints for coding denotational semantics.

First, the syntax specification trivially and naturally yields an executable
parser. The BNF specification of a language L can be quite easily transformed
to a Definite Clause Grammar (DCG) [24]. The syntax specification2 written in
the DCG notation serves as a parser for L. This parser can be used to parse
1 Constraints may be used, for example, to specify semantics of languages for real-time

systems [7].
2 A grammar coded as a DCG is syntax specification in the sense that various op-

erational semantics of logic programming (standard Prolog order, tabled execution,
etc.) can be used for execution during actual parsing. Different operational semantics
will result in different parsing algorithms (e.g., Prolog in recursive descent parsing
with backtracking, tabled execution in chart parsing, etc.).

Towards Provably Correct Code Generation 101

programs written in L and obtain their parse trees (or syntax trees). Thus, the
syntactic BNF specification of a language is easily turned into executable syntax
(i.e., a parser). Note that the syntax of even context sensitive languages can be
specified using DCGs [6].

Second, the semantic algebra and valuation functions of L can also be coded
in Horn-clause Logic. Since Horn-clause Logic or pure Prolog is a declarative
programming notation, just like the λ-calculus, the mathematical properties of
denotational semantics are preserved. Since both the syntax and semantic part
of the denotational specification are expressed as logic programs, they are both
executable. These syntax and semantic specifications can be loaded in a logic
programming system and executed, given a program written in L. This provides
us with an interpreter for the language L. In other words, the denotation3 of a
program written in L is executable. This executable denotation can also be used
for many applications, including automated generation of compiled code.

Third, non-deterministic4 semantics can be given to a language w.r.t. re-
sources (e.g., time, space, battery power) consumed during execution. For ex-
ample, some operations in the semantic algebra may be specified in multiple
ways (say in software or in hardware) with each type of specification resulting in
different resource consumption. Given a program and bounds on the resources
that can be consumed, only some of the many possible semantics may be viable
for that program. Resource bounded partial evaluation [2] can be used to for-
malize resource conscious compilation (e.g., energy aware compilation) [26] via
Horn Logical semantics.

Horn-logical semantics can also be used for automatic verification and consis-
tency checking [6, 7]. We do not elaborate any further since we are not concerned
with verification in this paper.

The disadvantage of Horn logical semantics is that it is not denotational in
the strict sense of the word because the semantics given for looping constructs
is not compositional. The fix operator used to give compositional semantics of
looping constructs in λ-calculus cannot be naturally coded in Horn logic due to
lack of higher order functions. This, for example, precludes the use of structural
induction to prove properties of programs. However, note that even though the
semantics is not truly compositional, it is declarative, and thus the fix-point of
the logic program representing the semantics can be computed via the standard
TP operator [17]. Structural/fix-point induction can then be performed over this
TP operator to prove properties of programs. Note that even in the traditional
λ-calculus approach, the declarative meaning of the fix operator (defined as
computing the limit of a series of functions) is given outside the operational
framework of the λ-calculus, just as the computation of the fix(TP) in logic
programming is outside the operational framework of Horn Clause logic. For
partial evaluation, the operational definition of fix, i.e., fix(F) = F(fix F), is
used.

3 We refer to the denotation of a program under the Horn-logical semantics as its
Horn logical denotation.

4 Non-deterministic in the logic programming sense.

102 Qian Wang, Gopal Gupta, and Michael Leuschel

In [6] we show how both the syntax and semantics of a simple imperative
language (a simple subset of Pascal whose grammar is shown in Figure 1) can be
given in Horn Logic. The Horn log-
ical semantics, viewed operationally,
automatically yields an interpreter.
Given a program P , the interpreter
can be partially evaluated w.r.t. P to
obtain P ’s compiled code.

A program and its correspond-
ing code generated via partial evalu-
ation using the logen system [14] is
shown below. The specialization time
is insignificant (i.e., less than 10 ms).

Program ::= C.

C ::= C1;C2 |

loop while B C end while |

if B then C1 else C2 endif |

I := E

E ::= N | Identifier | E1 + E2 |

E1 - E2 | E1 * E2 | (E)

B ::= E1 = E2 | E1 > E2 | E1 < E2

N ::= 0 | 1 | 2 | ... | 9

Identifier ::= w | x | y | z

Fig. 1. BNF grammar

Note that the semantics is written under the assumption that the program takes
exactly two inputs (found in variables x and y) and produces exactly one output
(placed in variable z). The definitions of the semantic algebra operations are
removed, so that unfolding during partial evaluation will stop when a semantic
algebra operation is encountered. The semantic algebra operations are also shown
below.

z = 1; main(A, B, C) :- while_eval__1(A, B) :-

w = x; initialize_store(D), access(w, A, C),

loop while w > 0 update(x, A, D, E), (C>0 ->

z = z * y ; update(y, B, E, F), access(z, A, D),

w = w - 1 update(z, 1, F, G), access(y, A, E),

end while. access(x, G, H), F is D*E,

update(w, H, G, I), update(z, F, A, G),

while_eval__1(I, J), access(w, G, H),

K=J, I is H-1,

access(z, K, C). update(w, I, G, J),

while_eval__1(J, B),

; B=A).

SEMANTIC ALGEBRA:

initialize_store([(x,0),(y,0),(z,0),(w,0)]).

access(Id,[(Id,Val)|_],Val). update(Id,NV,[(Id,_)|R],[(Id,NV)|R]).

access(Id,[_|R],Val) :- update(Id,NewV,[P|R],[P|R1]) :-

access(Id,R,Val). update(Id,NewV,R,R1).

Notice that in the program that results from partial evaluation, only a series
of memory access, memory update, arithmetic and comparison operations are
left, that correspond to load, store, arithmetic, and comparison operations of a
machine language. The while-loop, whose meaning was expressed using recursion,
will partially evaluate to a tail-recursive program. These tail-recursive calls are
easily converted to iterative structures using jumps in the target code.

Though the compiled code generated is in Prolog syntax, it looks a lot like ma-
chine code. A few simple transformation steps will produce actual machine code.
These transformations include replacing variable names by register/memory lo-
cations, replacing a Prolog function call by a jump (using a goto) to the code

Towards Provably Correct Code Generation 103

for that function, etc. The code generation process is provably correct, since
target code is obtained automatically via partial evaluation. Of course, we need
to ensure that the partial evaluator works correctly. However, this needs to be
done only once. Note that once we prove the correctness of the partial evaluator,
compiled code for programs written in any language can be generated as long as
the Horn-logical semantics of the language is given.

It is easy to see that valuation predicate for an iterative structure will always
be tail-recursive. This is because the operational meaning of a looping construct
can be given by first iterating through the body of the loop once, and then
recursively re-processing the loop after the state has been appropriately changed
to reflect the new values of the loop control parameters. The valuation predicate
for expressing this operational meaning will be inherently tail recursive.

Note also that if a predicate definition is tail recursive, a folding/unfolding
based partial evaluation of the predicate will preserve its tail-recursiveness. This
allows us to replace a tail recursive call with a simple jump while producing
the final assembly code. The fact that tail-recursiveness is preserved follows
from the fact that folding/unfolding based partial evaluation can be viewed as
algebraic simplification, given the definitions of various predicates. Thus, given
a tail recursive definition, the calls in its body will be expanded in-place during
partial evaluation. Expanding a tail-recursive call will result in either the tail-
recursion being eliminated or being replaced again by its definition. Since the
original definition is tail-recursive, the unfolded definition will stay tail recursive.
(A formal proof via structural induction can be given [25] but is omitted due to
lack of space.)

3 Definite Clause Semantics

Note that in the code generated, the update and access operations are pa-
rameterized on the memory store (i.e., they take an input store and produce
an output store). Of course, real machine instructions are not parameterized on
store. This store parameter can be (syntactically) eliminated by using the DCG
notation for expressing the valuation predicates as well.

All valuation predicates take a store argument as input, modify it per the
semantics of the command under consideration and produce the modified store
as output [6]. Because the semantic rules are stated declaratively, the store ar-
gument “weaves” through the semantic sub-predicates called in the rule. This
suggests that we can express the semantic rules in the DCG notation. Thus,
we can view the semantic rules as computing the difference between the output
and the input stores. This difference reflects the effect of the command whose
semantics is being given. Expressed in the DCG notation, the store argument
is (syntactically) hidden away. For example, in the DCG notation the valuation
predicate

command(comb(C1, C2), Store, Outstore) :-
command(C1, Store, Nstore),
command(C2, Nstore, Outstore).

is written as:
command(comb(C1, C2)) --> command(C1), command(C2).

104 Qian Wang, Gopal Gupta, and Michael Leuschel

In terms of difference structures, this rules states that the difference of stores
produced by C1; C2 is the “sum” of differences of stores produced by the com-
mand C1 and C2. The rest of the semantic predicates can be rewritten in this
DCG notation in a similar way.

main(U,V,A) -->

update(x,U),

update(y,V),

update(z,1),

access(x,F),

update(w,F),

while eval 1,

access(z,A).

while eval 1 -->

(access(w,C),

{0<C} ->

access(z,D),

access(y,E),

{F is D*E},
update(z,F),

access(w,H),

{I is H-1},
update(w,I),

while eval 1

; []).

main: while:

store x U load w C

store y V skipgtz C

store z 1 jump else

load x F load z D

store w F load y E

jump while mul D E F

end: store z F

load z W load w H

sub1 H I

store w I

jump while

else:

noop

jump end

Fig. 2. Partially evaluated semantics and its assembly code

Expressed in the DCG notation, the semantic rules become more intuitively
obvious. In fact, these rules have more natural reading; they can be read as sim-
ple rewrite rules. Additionally, now we can partially evaluate this DCG w.r.t. an
input program, and obtain compiled code that has the store argument syntacti-
cally hidden. The result of partially evaluating this DCG-formatted semantics is
shown to the left in Figure 2. Notice that the store argument weaving through
the generated code shown in the original partially evaluated code is hidden away.
Notice also that the basic operations (such as comparisons, arithmetic, etc.) that
appear in the target code are placed in braces in definite clause semantics, so
that the two store arguments are not added during expansion to Prolog. The
constructs appearing within braces can be regarded as the “terminal” symbols in
this semantic evaluation, similar to terminal symbols appearing in square brack-
ets in the syntax specification. In fact, the operations enclosed within braces
are the primitive operations left in the residual target code after partial evalu-
ation. Note, however, that these braces can be eliminated by putting wrappers
around the primitive operations; these wrappers will have two redundant store
arguments that are identical, per the requirements of the DCG notation. Note
also that since the logen partial evaluator is oblivious of the DCG notation,
the final generated code was cast into the DCG notation manually.

Towards Provably Correct Code Generation 105

Now that the store argument that was threading through the code has been
eliminated, the access/update instructions can be replaced by load/store instruc-
tions, tail recursive call can be replaced by a jump, etc., to yield proper assembly
code. The assembly code that results in shown to the right in figure 2. We assume
that inputs will be found in registers U and V, and the output will be placed in
register W. Note that x, y, z, w refer to the memory locations allocated for the
respective variables. Uppercase letters denote registers. The instruction load x
Y moves the value of memory location x into register Y, likewise store x Y moves
the value of register Y in memory location x (on a modern microprocessor, both
load and store will be replaced by the mov instruction); the instruction jump
label performs an unconditional jump, mul D E F multiplies the operands D
and E and puts the result in register F, sub1 A B subtracts 1 from register A
and puts the result in register B, while skipgtz C instruction realizes a condi-
tional expression (it checks if register C is greater than zero, and if so, skips the
immediately following instruction).

Note that we have claimed the semantics (e.g., the one given in section 3) to
be denotational. However, there are two problems: (i) First, we use the (p->q;r)
construct of logic programming which has a hidden cut, which means that the
semantics predicates are not even declarative. (ii) second, the semantics is not
truly compositional, because the semantics of the while command is given in
terms of the while command itself. This non-compositionality means that struc-
tural induction cannot be applied.

W.r.t. (i) note that the condition in the -> always involves a relational opera-
tor with ground arguments (e.g., Bval = true). The negation of such relational
expressions can always be computed and the clause expanded to eliminate the
cut. Thus, a clause of the form

p(..) :- (Bval = true -> q(...); r(...))
can be re-written as

p(..) :- Bval = true, q(...).
p(..) :- Bval = false, r(...).

Note that this does not adversely affect the quality of code produced via partial
evaluation.

W.r.t. (ii), as noted earlier, program properties can still be proved via struc-
tural induction on the TP operator, where P represents the Horn logical semantic
definition.

Another issue that needs to be addressed is the ease of proving a partial
evaluator correct given that a partial evaluator such as logen [14] or Mixtus [22]
are complex pieces of software. However, as already mentioned, because of the
offline approach the actual specialization phase of logen is quite straightforward
and should be much easier to prove correct. Also, because of the predictability
of the offline approach, it should also be possible to formally establish that the
output of logen corresponds to proper target code5.

5 E.g., for looping constructs, the unfolding of the (tail) recursive call has to be done
only once through the recursive call to obtain proper target code.

106 Qian Wang, Gopal Gupta, and Michael Leuschel

Note that because partial evaluation is done until only the calls to the se-
mantic algebra operation remain, the person defining the semantics can control
the type of code generated by suitably defining the semantic algebra. Thus, for
example, one can first define the semantics of a language in terms of semantic
algebra operations that correspond to operations in an abstract machine. Ab-
stract machine code for a program can be generated by partial evaluation w.r.t.
this semantics. This code can be further refined by giving a lower level seman-
tics for abstract machine code programs. Partial evaluation w.r.t. this lower level
semantics will yield the lower level (native) code.

4 Continuation Semantics

So far we have modeled only direct semantics [23] using Horn logic. It is well
known that direct semantics cannot naturally model exception mechanisms and
goto statements of imperative programming languages. To express such con-
structs naturally, one has to resort to continuation semantics. We next show
how continuation semantics can be naturally expressed in Horn Clause logics us-
ing the DCG notation. In the definite clause continuation semantics, semantics
of constructs is given in terms of the differences of parse trees (i.e., difference
of the input parse tree and the continuation’s parse tree) [25]. Each semantic
predicate thus relates an individual construct (difference of two parse trees) to a
fragment of the store (difference of two stores). Thus, semantic rules are of the
form:

command(C1, C2, Program, S1, S2) :- ...
where the difference of C1 and C2 (say ΔC) represents the command whose
semantics is being given, and the difference of S1 and S2 represents the store
which reflects the incremental change (ΔS) brought about to the store by the
command ΔC. Note that the Program parameter is needed to carry the mapping
between labels and the corresponding command. Each semantic rule thus is a
stand alone rule relating the difference of command lists, ΔC, to difference of
stores, ΔS. If we view a program as a sequence of difference of command lists
then its semantics can simply be obtained by “summing” the difference of stores
for each command. That is, if we view a program P as consisting of sequence of
commands:

P = ΔC1 + ΔC2 + . . . + ΔCn

then its semantics S is viewed as a “sum” of the corresponding differences of
stores:

S = ΔS1 ⊕ΔS2 ⊕ . . .⊕ΔSn

and the continuation semantics simply maps each ΔCi to the corresponding ΔSi.
Note that ⊕ is a non-commutative operator, and its exact definition depends on
how the store is modeled. Additionally, continuation semantics allow for cleaner,
more intuitive declarative semantics for imperative constructs such as exceptions,
catch/throw, goto, etc. [23].

Finally, note that the above continuation semantics rules can also be written
in the DCG notation causing the arguments S1 and S2 to become syntactically
hidden:

Towards Provably Correct Code Generation 107

command(C1, C2, Program) --> ...
Below, we give the continuation semantics of the subset of Pascal considered
earlier after extending it with statement labels and a goto statement. Note that
the syntax trees are now represented as a list of commands. Each command is
represented in the syntax tree as a pair, whose first element is a label (possibly
null) and the second element is the command itself. Only the valuation functions
for commands are shown (those for expressions, etc., are similar to the one shown
earlier).

prog_eval([], _, _, 0) --> []

prog_eval(CommList, Val_x, Val_y, Output) -->

update(x, Val_x), update(y, Val_y),

command_eval(CommList,cont([],[]), CommList), access(z, Output).

command_eval([],[],_Program) --> [].

command_eval([],cont(CommList,Cont),Program)-->

command_eval(CommList,Cont,Program).

command_eval([Comm|CommList],Cont,Program)-->

comm_eval(Comm,CommList,Cont,NCommList,NCont,Program),

command_eval(NCommList,NCont,Program).

comm_eval([(_,abort)|_],_Comm,_Cont,[],[],_Program) --> [].

comm_eval((Label,while(B,LoopBody)),OldRest,OldCont,[],[],Program)

--> bool_while_eval(B,LoopBody,

cont([(Label,while(B,LoopBody))|OldRest],

OldCont), OldRest,OldCont,Program).

comm_eval((_,ce(B,C1,C2)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),C2,cont(OldRest,OldCont),Program).

comm_eval((_,ce(B,C1)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),OldRest,OldCont,Program).

comm_eval((_,jmp(ID)),_OldRest,_OldCont,JumpList,cont([],[]),Program)-->

{find_label(ID,Program,JumpList)}.

comm_eval((_,assign(id(I), E)),OldRest,OldCont,OldRest,OldCont,_Program)

--> expr(E, Val), update(I, Val).

bool_while_eval(Cond,C1,C1Cont,C2,C2Cont,Program) -->

bool_eval(Cond,C1,C1Cont,C2,C2Cont,Program).

bool_eval(greater(E1, E2),C1,C1Cont,C2,C2Cont,Program)

--> expr(E1, Eval1), expr(E2, Eval2),

({Eval1 > Eval2} -> command_eval(C1,C1Cont,Program) ;

command_eval(C2,C2Cont,Program)).

/*the code for lesser(E1,E2) and equal(E1,E2) is very similar*/

The code above is self-explanatory. Semantic predicates pass command continua-
tions as arguments. The code for find label/3 predicate is not shown. It looks
for the program segment that is a target of a goto and changes the current
continuation to that part of the code.

Consider the program shown below to the left in Figure 3. In this program
segment, control jumps from outside the loop to inside via the goto statement.

108 Qian Wang, Gopal Gupta, and Michael Leuschel

The result of partially evaluating the interpreter (after removing the definitions
of semantic algebra operations) obtained from the semantics w.r.t. this program
(containing a goto) is shown in the figure 3 to the right. Figures 4 shows another
instance of a program involving goto’s and the code generated by the logen
partial evaluator by specialization of the definite clause continuation semantics
shown above.

//source code
z = 1;
w = x;
goto label;
loop while w > 0

z = z * y ;
label: w = w - 1

endloop while;
z = 8;
z = 7.

//generated code
interpreter(A, B, C) -->

update(x, A),
update(y, B),
update(z, 1),
access(x, D),
update(w, D),
access(w, E),
{F is E-1},
update(w, F),
fix1,
access(z, C).

fix1 -->

(access(w, A),
{0<A} ->

access(z, B),
access(y, C),
{D is B*C},
update(z, D),
access(w, E),
{F is E-1},
update(w, F),
fix1

; update(z, 8),
update(z, 7)

).

Fig. 3. Example with a jump from outside to inside a while loop

Note that a Horn logical continuation semantics can be given for any imper-
ative language in such a way that its partial evaluation w.r.t. a program will
yield target code in terms of access/update operation. This follows from the fact
that programs written in imperative languages consist of a series of commands
executed under a control that is explicitly supplied by the programmer. Control
is required to be specified to a degree that the continuation of each command
can be uniquely determined. Each command (possibly) modifies the store. Con-
tinuation semantics of a command is based on modeling the change brought
about to the store by the continuation of this command. Looking at the struc-
ture of the continuation semantics shown above, one notes that programs are
represented as lists of commands. The continuation of each command may be
the (syntactically) next command or it might be some other command explicitly
specified by a control construct (such as a goto or a loop). The continuation is
modeled in the semantics explicitly, and can be explicitly set depending on the
control construct. The semantics rule for each individual command computes
the changes made to the store as well as the new continuation. Thus, as long
as the control of an imperative language is such that the continuation of each
command can be explicitly determined, its Horn logical continuation semantics
can be written in the DCG syntax. Further, since the semantics is executable,
given a program written in the imperative language, it can be executed under
this semantics. The execution can be viewed as unfolding the top-level call, until
all goals are solved. If the definitions of the semantic algebra operations are re-

Towards Provably Correct Code Generation 109

//source code
z = 1;
w = x;
loop while w > 0

z = z * y ;
w = w - 1;
goto label

endloop while;
label: z = 8
z = 7.

//generated code
interpreter(A, B, C) -->

update(x, A), update(y, B),
update(z, 1),
access(x, D), update(w, D),
(access(w, E),

{0<E} ->

access(z, F), access(y, G),
{H is F*G},
update(z, H),
access(w, I),
{J is I-1},
update(w, J),
update(z, 8), update(z, 7)

; update(z, 8), update(z, 7)
),
access(z, C).

Fig. 4. Example with a jump from inside to outside a while loop

moved, then the top-level call can be simplified via unfolding (partial evaluation)
to a resolvent which only contains calls to the semantic algebra operations; this
resolvent will correspond to the target code of the program.

It should also be noted that the logen system allows users to control the
partial evaluation process via annotations. Annotations are generated by the
BTA and then can be modified manually. This feature of the logen system
gives considerable control of the partial evaluation process – and hence of the
code generation process – to the user. The interpreter has to be annotated only
once by the user, to ensure that good quality code will be generated.

5 A Case Study in SCR

We have applied our approach to a number of practical applications. These
include generating code for parallelizing compilers in a provably correct manner
[6], generating code for controllers specified in Ada [13] and for domain specific
languages [8] in a provably correct manner, and most recently generating code in
a provably correct manner for the Software Cost Reduction (SCR) framework.

The SCR (Software Cost Reduction) requirements method is a software de-
velopment methodology introduced in the 80s [9] for engineering reliable soft-
ware systems. The target domain for SCR is real-time embedded systems. SCR
has been applied to a number of practical systems, including avionics system
(the A-7 Operational flight Program), a submarine communication system, and
safety-critical components of a nuclear power plant [10].

We have developed the Horn logical continuation semantics for the complete
SCR language. This Horn logical semantics immediately provides us with an

110 Qian Wang, Gopal Gupta, and Michael Leuschel

interpreter on which the program above can be executed. Further, the interpreter
was partially evaluated and compiled code was obtained. The time taken to
obtain compile code using definite clause continuation semantics of SCR was
an order of magnitude faster than a program transformation based strategy
described in [16] that uses the APTS system [20], and more than 40 times faster
than a strategy that associates C code as attributes of parse tree nodes and
synthesizes the overall code from it [16].

6 Related Work

Considerable work has been done on manually or semi-mechanically proving
compilers correct. Most of these efforts are based on taking a specific compiler
and showing its implementation to be correct. A number of tools (e.g., a theo-
rem prover) may be used to semi-mechanize the proof. Example of such efforts
range from McCarthy’s work in 1967 [18] to more recent ones [3]. As mentioned
earlier, these approaches are either manual or semi-mechanical, requiring hu-
man intervention, and therefore not completely reliable enough for engineering
high-assurance systems. “Verifying Compilers” have also been considered as one
of the grand challenge for computing research [11], although the emphasis in
[11] is more on developing a compiler that can verify the assertions inserted in
programs (of course, such a compiler has to be proven correct first).

Considerable work has also been done on generating compilers automatically
from language semantics [23]. However, because the syntax is specified as a
(non-executable) BNF and semantics is specified using λ-calculus, the automatic
generation process is very cumbersome. The approach outlined in this paper falls
in this class, except that it uses Horn logical semantics which, we believe and
experience suggests, can be manipulated more efficiently. Also, because Horn
logical semantics has more of an operational flavor, code generation via partial
evaluation can be done quite efficiently.

Considerable work has also been done in using term rewriting systems for
transforming source code to target code. In fact, this approach has been applied
by researchers at NRL to automatically generate C code from SCR specification
using the APTS [20] program transformation system. As noted earlier, the time
taken is considerably more than in our approach. Other approaches that fall in
this category include the HATS system [27] that use tree rewriting to accomplish
transformations. Other transformation based approaches are mentioned in [16].

Recently, Pnueli et al have taken the approach of verifying a given run of the
compiler rather than a compiler itself [21]. This removes the burden of main-
taining the compiler’s correctness proof; instead each run is proved correct by
establishing a refinement relationship. However, this approach is limited to very
simple languages. As the authors themselves mention, their approach “seems to
work in all cases that the source and target programs each consist of a repeated
execution of a single loop body ..,” and as such is limited. For such simple lan-
guages, we believe that a Horn logical semantics based solution will perform
much better and will be far easier to develop. Development of the refinement

Towards Provably Correct Code Generation 111

relation is also not a trivial task. For general programs and general languages,
it is unlikely that the approach will work.

Note that considerable work has been done in partially evaluating meta-
interpreters for declarative languages, in order to eliminate the interpretation
overhead (see, for example, [19, 1]). However, in this paper our goal is to generate
assembly-like target code for imperative languages.

7 Conclusions

In this paper we presented an approach based on formal semantics, Horn logic,
and partial evaluation for obtaining provably correct compiled code. We showed
that not only the syntax specification, but also the semantic specification can
be coded in the DCG notation. We also showed that continuation semantics of
an imperative language can also be coded in Horn clause logic. We applied our
approach to a real world language – the SCR language for specifying real-time
embedded system. The complete syntax and semantic specification for SCR was
developed and used for automatically generating code for SCR specifications.
Our method produces executable code considerably faster than other transfor-
mation based methods for automatically generating code for SCR specifications.

Acknowledgments

We are grateful to Constance Heitmeyer and Elizabeth Leonard of the Naval
Research Labs for providing us with the BNF grammar of SCR and the safety
injection program as well as for discussions, and to the anonymous referees.

References

1. A. Brogi and S. Contiero. Specializing Meta-Level Compositions of Logic Programs.
Proceedings LOPSTR’96, J. Gallagher. Springer-Verlag, LNCS 1207.

2. S. Debray. Resource bounded partial evaluation. PEPM 1997. pp. 179-192.
3. A. Dold, T. Gaul, W. Zimmermann Mechanized Verification of Compiler Backends

Proc. Software Tools for Technology Transfer, Denmark, 1998.
4. S. R. Faulk. State Determination in Hard-Embedded Systems. Ph.D. Thesis, Univ.

of NC, Chapel Hill, NC, 1989.
5. Y. Futamura. Partial Evaluation of Computer Programs: An approach to compiler-

compiler. J. Inst. Electronics and Comm. Engineers, Japan. 1971.
6. G. Gupta “Horn Logic Denotations and Their Applications,” The Logic Program-

ming Paradigm: A 25 year perspective. Springer Verlag. 1999:127-160.
7. G. Gupta, E. Pontelli. A Constraint-based Denotational Approach to Specification

and Verification of Real-time Systems. In Proc. IEEE Real-time Systems Sympo-
sium, pp. 230-239. Dec. 1997.

8. G. Gupta, E. Pontelli. A Logic Programming Framework for Specification and Im-
plementation of Domain Specific Languages. In Essays in Honor of Robert Kowal-
ski, 2003, Springer Verlag LNAI,

112 Qian Wang, Gopal Gupta, and Michael Leuschel

9. K. L. Henninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Trans. on Software Engg. 5(1):2-13.

10. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated Consistency Check-
ing of Requirements Specifications. ACM TOSEM 5(3). 1996.

11. C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing Re-
search. J.ACM, 50(1):63-69. Jan 2003.

12. N. Jones. Introduction to Partial Evaluation. In ACM Computing Surveys.
28(3):480-503.

13. L. King, G. Gupta, E. Pontelli. Verification of BART Controller. In High Integrity
Software, Kluwer Academic, 2001.

14. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

15. M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Poly-
variance in Partial Deduction of Normal Logic Programs. ACM Transactions on
Programming Languages and Systems (TOPLAS), 20(1):208-258.

16. E. I. Leonard and C. L. Heitmeyer. Program Synthesis from Requirements Speci-
fications Using APTS. Kluwer Academic Publishers, 2002.

17. J. Lloyd. Foundations of Logic Programming (2nd ed). Springer Verlag. 1987.
18. J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic Expressions.

MIT AI Lab Memo, 1967.
19. S. Owen. Issues in the Partial Evaluation of Meta-Interpreters. Proceedings

Meta’88. MIT Press. pp. 319–339. 1989.
20. R. Paige. Viewing a Program Transformation System at Work. Proc. Programming

Language Implementation and Logic Programming, Springer, LNCS 844. 1994.
21. A. Pnueli, M. Siegel, E. Singerman. Translation Validation. Proc TACAS’98,

Springer Verlag LNCS, 1998.
22. D. Sahlin. An Automatic Partial Evaluator for Full Prolog. Ph.D. Thesis. 1994.

Royal Institute of Tech., Sweden. (available at www.sics.se)
23. D. Schmidt. Denotational Semantics: a Methodology for Language Development.

W.C. Brown Publishers, 1986.
24. L. Sterling & S. Shapiro. The Art of Prolog. MIT Press, ’94.
25. Q. Wang, G. Gupta, M. Leuschel. Horn Logical Continuation Semantics. UT Dallas

Technical Report. 2004.
26. Q. Wang, G. Gupta. Resource Bounded Compilation via Constrained Partial Eval-

uation. UTD Technical Report. Forthcoming.
27. V. L. Winter. Program Transformation in HATS. Software Transformation Systems

Workshop, ’99.

A Provably Correct Compiler for Efficient
Model Checking of Mobile Processes�

Ping Yang1, Yifei Dong2, C.R. Ramakrishnan1, and Scott A. Smolka1

1 Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
{pyang,cram,sas}@cs.sunysb.edu

2 School of Computer Science, Univ. of Oklahoma, Norman, OK, 73019, USA
dong@cs.ou.edu

Abstract. We present an optimizing compiler for the π-calculus that
significantly improves the time and space performance of the MMC
model checker. MMC exploits the similarity between the manner in which
resolution techniques handle variables in a logic program and the manner
in which the operational semantics of the π-calculus handles names by
representing π-calculus names in MMC as Prolog variables, with distinct
names represented by distinct variables. Given a π-calculus process P ,
our compiler for MMC produces an extremely compact representation
of P ’s symbolic state space as a set of transition rules. It also uses AC
unification to recognize states that are equivalent due to symmetry.

1 Introduction

The recent literature describes a number of efforts aimed at building practical
tools for the verification of concurrent systems using Logic Programming (LP)
technology; see e.g. [23, 20, 11, 7, 6]. The basic idea underlying these approaches is
to pose the verification problem as one of query evaluation over (constraint) logic
programs; once this has been accomplished, the minimal-model computation in
LP can be used to compute fixed points over different domains.

Taking this idea one step further, in [26], we developed the MMC model
checker for the π-calculus [17], a process algebra in which new channel names
can be created dynamically, passed as values along other channels, and then used
themselves for communication. This gives rise to great expressive power: many
computational formalisms such as the λ-calculus can be smoothly translated into
the π-calculus, and the π-calculus provides the semantic foundation for a number
of concurrent and distributed programming languages (e.g. [19]). MMC also
supports the spi-calculus [1], an extension of the π-calculus for the specification
and verification of cryptographic protocols. The treatment of channel names
in the π- and spi-calculi poses fundamental problems in the construction of a
model checker, which are solved in MMC using techniques based on LP query-
evaluation mechanisms as explained below.
� Research supported in part by NSF grants CCR-9876242, CCR-9988155, IIS-0072927, CCR-

0205376, CCR-0311512, ARO grants DAAD190110003 and DAAD190110019, and ONR
grant N000140110967.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 Ping Yang et al.

MMC, which stands for the Mobility Model Checker, targets the finite-control
subset of the π- and spi-calculi1 so that model checking, the problem of deter-
mining whether a system specification S entails a temporal-logic formula ϕ, may
proceed in a fully automatic, push-button fashion. It uses the alternation-free
fragment of the π-μ-calculus, a highly expressive temporal logic, for the property
specification language.

MMC is built upon the XSB logic programming system with tabulation [25]
and, indeed, tabled resolution played a pivotal role in MMC’s development.
State-space generation in MMC is performed by querying a logic program, called
trans, that directly and faithfully encodes π’s symbolic operational seman-
tics [15]. The key to this encoding is the similarity between the manner in which
resolution techniques (which underlie the query-evaluation mechanism of XSB
and other logic-programming systems) handle variables in a logic program and
the manner in which the operational semantics of the π-calculus handles names.
We exploit this similarity by representing π-calculus names in MMC as Prolog
variables, with distinct names represented by distinct variables.

Query evaluation in MMC resorts to renaming (alpha conversion) when-
ever necessary to prevent name capture, and parameter passing is realized via
unification. Variables are checked for identity (i.e. whether there is a substitu-
tion that can distinguish two variables) whenever names need to be equal, for
instance, when processes synchronize. The management of names using resolu-
tion’s variable-handling mechanisms makes MMC’s performance acceptable.

Other than MMC, there have been few attempts to build a model checker
for the π-calculus, despite its acceptance as a versatile and expressive modeling
formalism. The Mobility Workbench (MWB) [24] is an early model checker and
bisimulation checker for π; the implementation of its model checker, however,
does not address performance issues. The PIPER system [3] generates CCS pro-
cesses as “types” for π-calculus processes, and formulates the verification prob-
lem in terms of these process types; traditional model checkers can then be ap-
plied. This approach requires, however, user input in the form of type signatures
and does not appear to be fully automated. In [13], a general type system for the
π-calculus is proposed that can be used to verify properties such as deadlock-
freedom and race-freedom. A procedure for translating a subset of the π-calculus
into Promela, the system modeling language of the SPIN model checker [12], is
given in [21]. Spin allows channel passing and new name generation, but may not
terminate in some applications that require new name generation where MMC
does; e.g. a handover protocol involving two mobile stations.

Problem Addressed and Our Solution: Although MMC’s performance is
considerably better than that of the MWB, it is still an order of magnitude worse
than that of traditional model checkers for non-mobile systems, such as SPIN and
the XMC model checker for value-passing CCS [20]. XMC, like MMC, is built on
top of the XSB logic-programming engine; despite its high-level implementation
in Prolog, benchmarks show that it still exhibits competitive performance [8].
1 The class of finite-control processes are those that do not admit parallel composition

within the scope of recursion.

A Provably Correct Compiler for Efficient Model Checking 115

One reason for this is the development of a compiler for XMC that produces
compact transition-system representations from CCS specifications [9].

In this paper, we present an optimizing compiler, developed along the lines
of [9], for the π- and spi-calculi. Our compiler (Section 3), which uses LP tech-
nology and other algorithms developed in the declarative-languages community
(such as AC unification), seeks to improve MMC’s performance by compiling
process expressions into a set of transition rules. These rules, which form a logic
program, can then be queried by a model checker for generating actual transi-
tions. In contrast to the compiler for value-passing CCS, a number of fundamen-
tal compilation issues arise when moving to a formalism where channels can be
passed as messages, and communication links can be dynamically created and
altered via a technique known as scope extrusion and intrusion. Our approach
to dealing with these issues is as follows:

– Representation of states: The compiler uses a very compact representation
for transition-system states, requiring only a symbol for the control location
(i.e. a program counter value) and the valuations of variables that are free
and live at that state. It also identifies certain semantically equivalent states
that may have different syntactic representations. For instance, process ex-
pressions (νx)((νy)p(x, y) | q(x)) and (νx)(νy)(p(x, y) | q(x)) are considered
distinct in [26]. According to the structural congruence rule of the π-calculus,
however, these expressions are behaviorally identical and are given the same
state representation by the compiler.

– Determining the scope of names: Since names can be dynamically created
and communicated in the π-calculus, the scope of a name cannot in general be
determined at compile time. The compiler therefore generates transition rules
containing tagged names that allows the scope of a name to be determined
at model-checking time, when transitions are generated from the rules.

– State-space reduction via symmetry: The compiler exploits the associativity
and commutativity (AC) of the parallel composition operator when gener-
ating transition rules for the model checker (Section 4). In particular, tran-
sition rules may contain AC symbols and the compiler uses AC unification
and indexing techniques to realize a form of symmetry reduction, sometimes
leading to an exponential reduction in the size of the state space.

Another important aspect of MMC’s compiler is that it is provably correct :
The compiler is described using a syntax-directed notation, which when encoded
as a logic program and evaluated using tabled resolution becomes its implemen-
tation. Thus the compilation scheme’s correctness implies the correctness of the
implementation itself. Given the complex nature of the compiler, the ability to
obtain a direct, high-level, provably correct implementation is of significant im-
portance, and is a practical illustration of the power of declarative programming.

Our benchmarking results (Section 5) reveal that the compiler significantly
improves MMC’s performance and scalability. For example, on a handover pro-
tocol involving two mobile stations, the original version of MMC runs out of
memory while attempting to check for deadlock-freedom, even though 2GB of

116 Ping Yang et al.

memory is available in the system. In contrast, MMC with compilation verifies
this property in 47.01sec while consuming 276.29MB of memory. In another ex-
ample, a webserver application, the AC operations supported by the compiler
allow MMC to verify a system having more than 20 servers; MMC without com-
pilation could handle only 6 servers. The MMC system with the compiler is
available in full source-code form from http://lmc.cs.sunysb.edu/~mmc.

2 Preliminaries

MMC: A Model Checker for the π-Calculus. In MMC [26], π-calculus processes
are encoded as Prolog terms. LetA denote the set of prefixes, P the set of process
expressions, and D the set of process identifiers. Further, let X, Y, Z . . . range
over Prolog variables and p, q, r, . . . range over process identifiers. The syntax of
the MMC encoding of π-calculus processes is as follows:

A ::= in(X, Y) | out(X, Y) | tau

P ::= zero | pref(A,P) | nu(X,P) | par(P ,P) | choice(P ,P)
| match(X=Y,P) | proc(p(Y1, Y2, . . . , Yn))

D ::= def(p(X1, X2, . . . , Xn),P) where Xi’s are pairwise distinct

Prefixes in(X,Y), out(X,Y) and tau represent input, output and internal
actions, respectively. zero is the process with no transitions while pref(α,P)
is the process that can perform an α action and then behave as process P .
nu(X,P) behaves as P and X cannot be used as a channel over which to
communicate with the environment. Process match(X=Y ,P) behaves as P if the
names X and Y match, and as zero otherwise. The constructors choice and
par represent non-deterministic choice and parallel composition, respectively.
The expression proc(p(Y1, . . . , Yn)) denotes a process invocation where p is a
process name (having a corresponding definition) and Y1, . . . , Yn is a comma-
separated list of names that are the actual parameters of the invocation. Each
process definition of the form def(p(X1, . . . , Xn), P) associates a process name
p and a list of formal parameters X1, . . . , Xn with process expression P . A formal
definition of the correspondence between MMC’s input language and the syntax
of the π-calculus can be found in [26].

The standard notions of bound and free names (denoted by bn() and fn()
respectively) in the π-calculus carry over to the MMC syntax. We use n(e)
to denote the set of all names in a process expression e. Names bound by a
restriction operator in e are called local names of e.

In order to simplify the use of resolution procedures to handle names rep-
resented by variables, we use the following naming conventions. We say that a
process expression is valid if all of its bound names are unique and are distinct
from its free names. We say that a process definition of the form def(N,P) is
valid if P , the process expression on the right-hand side of the definition, is valid.
A process definition of the form def(N,P) is said to be closed if all free names
of P appear in N (i.e. are parameters of the process). In MMC, we require
all process definitions to be valid and closed. Note that this does not reduce

A Provably Correct Compiler for Efficient Model Checking 117

expressiveness since any process expression can be converted to an equivalent
valid expression by suitably renaming the bound names.

The operational semantics of the π-calculus is typically given in terms of
a symbolic transition system [17, 15]. The MMC model checker computes sym-
bolic transitions using the relation trans(s,a,c,d) where s and d represent the
source and destination states of a transition, a the action and c a constraint
on the names of s under which the transition is enabled. In the original model
checker [26], this relation was computed by interpreting MMC process expres-
sions: the trans relation was a direct encoding of the constructive semantics of
π-calculus given in [26] which is equivalent to the symbolic semantics of [15].

In MMC, properties are specified using the alternation-free fragment of the
π-μ-calculus [5], and the MMC model checker is encoded as the binary predicate
models(P,F) which succeeds if and only if a process P satisfies a formula F .
The encoding of the model checker is given in [26].

Logic Programs: We assume standard notions of predicate symbols, function
symbols, and variables. Terms constructed from these such that predicate sym-
bols appear at (and only at) the root are called atoms. The set of variables
occurring in a term t is denoted by vars(t); we sometimes use vars(t1, t2, . . . , tn)
to denote the set of all variables in terms t1, t2, . . ., tn. A substitution is a map
from variables to terms constructed from function symbols and variables. We use
(possibly subscripted) θ, θ′ to denote substitutions; the composition of two sub-
stitutions θ1 and θ2 is denoted by θ1θ2. A term t under substitution θ is denoted
by tθ. A renaming is a special case of substitution that defines a one-to-one
mapping between variables.

Horn clauses are of the form a0 :− a1, . . . , an where the ai are atoms. A goal
(also called a query) is an atom. Definite logic programs are a set of Horn clauses.
In this paper, we consider only definite logic programs, and henceforth drop the
qualifier “definite”. Top-down evaluation of logic programs based on one of sev-
eral resolution mechanisms such as SLD, OLD, and SLG [16, 4], determines the
substitution(s) under which the goal can be derived from the program clauses.
We use G

θ=⇒P � to denote the derivation of a goal G over a program P , where
θ represents the substitution collected in that derivation.

3 A Compiler for the π-Calculus

In this section, we present our compiler for the MMC model checker. Given
a process expression E, it generates a set of transition rules from which E’s
transitions can be easily computed. The number of transition rules generated
for an expression E is typically much smaller than the number of transitions in
E’s state space. More precisely, the number of transition rules generated for an
expression E is polynomial in the size of E even in the worst case, while the
number of transitions in E’s state space may be exponential in the size of E.

The rules generated by the compiler for a given MMC process expression
E define E’s symbolic transition system, and are represented using a Prolog

118 Ping Yang et al.

predicate of the form trans(s,a,c,d) where s and d are the transition’s source
and destination states, a is the action taken, and c is a constraint on the names
of s under which the transition is enabled. Although the clauses of the definition
of trans resemble facts, the constraints c that appear in them can be evaluated
only at run-time, and hence encode rules.

The representation used for states is as follows. If E is a sequential process
expression (i.e. does not contain a parallel composition operator) then it is rep-
resented by a Prolog term of the form si(V) where V are the free variables in E
and si represents the control location (analogous to a program counter) of E. For
instance, let E1 be the MMC process expression pref(in(X,Z),pref(out(Z,Y),
zero)). Names X and Y are free in E1 and Z is bound in E1. The symbolic state
corresponding to E1 is then given by a Prolog term of the form s1(X,Y), where
s1 denotes the control state. Observe that E1 can make an in(X,Z) action and
become E′

1, where E′
1 =pref(out(Z,Y), zero). The state corresponding to E′

1

is a term of the form s2(Z,Y). The symbolic transition from E1 to E′
1 becomes

the clause trans(s1(X,Y),in(X,Z),true,s2(Z,Y)).
If E is a parallel expression of the form par(E1,E2) then it is represented by

a term of the form prod(si,sj) where si and sj are the states corresponding to
E1 and E2, respectively. For example, let E2 =pref(out(U,V),pref(in(V,W),
zero)), and let s3(U,V) and s4(V) be the states corresponding to E2 and
pref(in(V,W), zero)), respectively. Letting E1 be defined as above, then the
state corresponding to E is prod(s1(X,Y),s3(U,V)).

Observe that E can perform a tau action and become process E′ =
par(pref(out(V,Y), zero),pref(in(V,W),zero)) whenever the free names
X of E1 and U of E2 are the same. Such a transition can then be represented by
a Horn clause or rule of the form:

trans(prod(s1(X,Y),s3(U,V)),tau,X=U,prod(s2(V,Y),s4(V)))

where the constraint X=U is the condition under which the transition is enabled.
Further observe that in E, subprocess E1 is capable of an autonomous (non-

synchronous) transition, taking E from par(E1,E2) to par(E′
1,E2). Such a

transition can be represented by a rule of the form:

trans(prod(s1(X,Y),P),in(X,Z),true,prod(s2(Z,Y),P)).

where P is a variable that ranges over states; thus transition rules may specify a
set of states using state patterns rather than simply individual states.

One of the challenges we encountered in developing a compiler for MMC
concerned the handling of scope extrusion in the π-calculus. In MMC without
compilation [26], local names can be determined when computing transitions
and hence scope extrusion was implemented seamlessly using Prolog’s unification
mechanism. However, at compilation time, it may be impossible to determine
whether a name is local. For instance, it is not clear if y is a local name in process
x(y).xy before the process receives an input name. Intuitively, we can solve this
problem by carrying local names explicitly in the states of the trans rule. This
approach, however, introduces a significant amount of overhead when invoking
the trans to compute the synchronization between two processes. Further, if we

A Provably Correct Compiler for Efficient Model Checking 119

do not know for certain whether a name is local, we must also carry a constraint
within the rule.

In order to handle scope extrusion efficiently, we propose the following so-
lution. We present names in MMC in one of two forms: either as plain Prolog
variables (as in the above examples), or as terms of the form name(Z) where
Z is a Prolog variable. Names of the latter kind are used to represent local
names, generated by the restriction operator, whereas names of the former kind
represent all others. This distinction is essential since we expand the scope of
restricted names using the structural congruence rule (νx)P |Q ≡ (νx)(P |Q)
whenever x �∈ fn(Q); this expansion process lets us consolidate the pairs of rules
Open and Prefix and Close and Com in the semantics of the π-calculus into
single rules. This distinction also enables us to quickly check whether a name is
restricted without explicitly keeping track of the environment.

3.1 Compilation Rules

Definition 1 (State Assignment) A state-assignment function σ maps pro-
cess expressions to positive integers such that for any two valid expressions E
and E′, σ(E) = σ(E′) if and only if E and E′ are variants of each other (i.e.
identical modulo names of variables).

Definition 2 (State Generation) Given a state-assignment function σ, the
state generation function Ψσ() maps a process expression E to a state as follows:

Ψσ(E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
state0 if E = zero

prod(Ψσ(E1), Ψσ(E2)) if E = par(E1, E2)
Ψσ(E1[name(V)/X]) if E = nu(X, E1)
where V ∈ n(E1)
stateσ(E)(fn(E)) otherwise

For each process expression E, MMC’s compiler recursively generates a set
of transition rules; i.e., E’s transition rules are produced based on the transition
rules of its subexpressions. The following operation over sets of transition rules
is used in defining the compilation procedure:

Definition 3 (Source State Substitution) Given a set of transition rules R,
a pair of states s and s′, and a constraint C, the source-state substitution of R,
denoted by R[s←s′;C], is the set of transition rules

{trans(s′, a, (c, C), d)|trans(s, a, c, d) ∈ R},

i.e. the set of rules obtained by first selecting rules whose source states unify
with s, replacing s by s′ in the source state, and adding constraint C to the
condition part of the selected rules. If C is empty (i.e. true) then we denote the
substitution simply by R[s←s′].

The transition rules generated for a process can be viewed as an automaton,
and source-state substitution can be viewed as an operation that replaces the
start state of a given automaton with a new state.

120 Ping Yang et al.

Expression E Transition Rules [[E]]

zero ∅
pref(α, E1) [[E1]] ∪ {trans(Ψσ(E), α, true, Ψσ(E1))}
choice(E1, E2) [[E1]] ∪ [[E2]] ∪ [[E1]][Ψσ(E1)←Ψσ(E)] ∪ [[E2]][Ψσ(E2)←Ψσ(E)]

nu(X, E1) [[E1[name(V)/X]]] V /∈ n(E1)

match(C, E1) [[E1]] ∪ ([[E1]][Ψσ(E1)←Ψσ(E);C])

par(E1, E2) {trans(prod(s1, V2), a, c, prod(d1, V2))
| trans(s1, a, c, d1) ∈ [[E1]]}

∪ {trans(prod(V1, s2), a, c, prod(V1, d2))
| trans(s2, a, c, d2) ∈ [[E2]]}

∪ {trans(prod(s1, s2), tau, (c1, c2, c), prod(d1, d2)θ)
| trans(s1, a1, c1, d1) ∈ [[E1]]
∧ trans(s2, a2, c2, d2) ∈ [[E2]]
∧ vars(s1, a1, c1, d1) ∩ vars(s2, a2, c2, d2) = ∅
∧ c = (u1 == u2) ∧ θ = mgu(v1, v2) where
{a1, a2} = {in(u1, v1), out(u2, v2)}
∧ (c1, c2, c) is satisfiable}

proc(p(
→
v)) [[E1[

→
v /

→
X]]] ∪ [[E1[

→
v /

→
X]]]

[Ψσ(E1[
→
v /

→
X])←Ψσ(E)]

where def(p(
→
X), E1) is a variant of a definition s.t. bn(E1)∩

→
v = ∅.

Fig. 1. Compilation rules for MMC.

Definition 4 (Compilation Function) Given a state-assignment function σ,
the compilation function [[·]] maps MMC process expressions to sets of transition
rules such that for any process expression E, [[E]] is the smallest set that satisfies
the equations of Figure 1.

The salient points of the compilation rules are as follows:

– In contrast to the CCS compiler [9], control states entry and exit are not in-
cluded in the π-calculus compilation rules. Instead, these states are uniquely
determined by the process expressions. This also avoids the generation of
internal i-transitions in the compilation rules.

– The rules for pref, choice, match, and proc can be seen as direct encodings
of the corresponding inference rules in Lin’s symbolic semantics [15].

– The compilation rule for nu specifies that the transition rules of nu(X, E)
are identical to the transition rules of E where free occurrences of X have
been replaced with a fresh local name name(V). Note that transitions of
nu(X, E) can be computed by discarding all transitions of E whose action
is over channel X . This effect is achieved by considering at model-checking
time only those transitions that are not over channels with local names.
Additionally, a local name becomes global if it is output along a global
channel using the Open rule. Thus the scope of names can only be completely
determined at model-checking time, when transitions are generated, and not
at compile time when transition rules are generated. Hence transition rules
assume that every local name can eventually become global, and we check
for locality of names when transitions are generated.

A Provably Correct Compiler for Efficient Model Checking 121

– The compilation rule for par precomputes, conservatively, all possible syn-
chronizations between the parallel components. In general, we can determine
whether two actions are complementary only when the binding of names is
known; hence we generate rules for tau transitions guarded by constraints
that are evaluated at model-checking time.

3.2 Proof of the Compiler’s Correctness

We show that MMC’s interpreted transition relation (henceforth called INT)
given in [26] is sound and complete with respect to the transition relation pro-
duced by the compiler.

Definition 5 A transition from state s1 to s2 with action a under constraint
c is said to be derivable from a logic program P (denoted by s1

a,c−→P s2) if
trans(s1, X, Y, Z)

θ=⇒P� (i.e. the query succeeds with answer θ) and there is
a renaming ρ such that Xθρ = a, Y θρ ≡ c and Zθρ = s2.

A transition from state s to state s′ where the action does not contain local
names is denoted by s
−→P s′; a sequence of zero or more such transitions is
denoted by s

∗
−→P s′.

The soundness and completeness proofs make use of the following fact.

Lemma 1 (Extensionality) Let p and q be valid process expressions such that
p −→INT q. Then any transition from q derived using the rules compiled from
q can also be derived using the rules compiled from p and vice versa. That is,
Ψσ(q)

a,c−→[[q]] Ψσ(q′) iff Ψσ(q)
a,c−→[[p]] Ψσ(q′).

The proof is by induction on the number of steps needed to derive a transition
in Ψσ(q).

The following lemma asserts that the transitions from an initial state deriv-
able from the compiled transition relation can also be derived using INT.

Lemma 2 Let p be a valid process expression. Then p
a,c−→INT q (i.e. expression

p becomes q after action a according to INT) whenever Ψσ(p)
a,c−→[[p]] Ψσ(q) and

a does not contain local names of p.

The proof is by induction on the number of steps needed to derive the tran-
sition from p using [[p]].

Theorem 3 (Soundness) Let e be a valid process expression and e
∗
−→INT p.

Then p
a,c−→INT q whenever Ψσ(p)

a,c−→[[e]] Ψσ(q) and a does not contain local
names of p.

The soundness theorem follows from Lemmas 1 and 2.
The following lemma asserts that the transitions from an initial state deriv-

able from INT can be derived using the compiled transition relation.

122 Ping Yang et al.

Lemma 4 Let p be a valid process expression. If p
a,c−→INT q (i.e. expression p

become q after action a according to INT) then Ψσ(p)
a,c−→[[p]] Ψσ(q).

The proof is by induction on the number of steps needed to derive the tran-
sition from p using INT.

Theorem 5 (Completeness) Let e be a valid process expression and
e

∗
−→INT p. If p
a,c−→INT q then Ψσ(p)

a,c−→[[e]] Ψσ(q).

The completeness theorem follows from Lemmas 1 and 4.

Implementation: The MMC compiler is implemented as a logic program that
directly encodes the compilation rules of Figure 1. The use of tabled resolution
makes such an implementation feasible, ensuring that each process expression in
the program is compiled only once. Furthermore, tabling ensures that recursive
process definitions can be compiled without extra control. More importantly,
the direct implementation means that the correctness of the implementation
follows from the correctness of the compilation rules. The implementation also
uses partial evaluation to optimize the set of transition rules generated. The
application of this optimization is straightforward, and is clearly reflected in the
compiler’s source code.

4 State-Space Reduction Using AC Unification/Matching

One source of inefficiency in using the compiled transition relation (also in
the interpreter INT) is the treatment of the product operator prod. In par-
ticular, it does not exploit the fact that prod is associative and commuta-
tive (AC); i.e., prod(s1, s2) is semantically identical to (has the same tran-
sitions as) prod(s2,s1), and prod(s1,prod(s2,s3)) is semantically identical to
prod(prod(s1,s2),s3). Thus, treating prod as an AC operator and using AC
unification [22] during resolution will undoubtedly result in a reduction in the
number of states that need to be examined during model checking.

AC matching and unification algorithms are traditionally viewed as pro-
hibitively expensive in programming systems. Since, however, prod occurs only
at the top-most level in terms representing states, a particularly efficient proce-
dure for AC unification during clause selection can be attained. As is done in
extant AC unification procedures (see, e.g. [14]), state terms are kept in a canon-
ical form by defining an order among terms with non-AC symbols, and a term of
the form prod(s1,prod(s2,s3)) is represented as the term prod([s1,s2,s3])
where [s1,s2,s3] is a list whose component states occur in the order defined over
non-AC terms.

State-space reduction is achieved by treating prod as an AC symbol and this
can be seen as a form of symmetry reduction [10]. The state patterns generated
at compile time are kept in canonical form. At model-checking time, the states
derived from these patterns are rewritten (if necessary) to maintain canonical

A Provably Correct Compiler for Efficient Model Checking 123

Fig. 2. Effect of compilation on chains of one-place buffers.

forms. Apart from generating fewer states at model-checking time, the compiler
generates fewer transition rules when using AC unification. For example, con-
sider the term E =par(E1,E2). For E’s autonomous transitions, the non-AC
compiler generates rules of the form

{trans(prod(s,V),a,c,prod(d,V)) | {trans(s,a,c,d) ∈ [[E1]]}
∪ {trans(prod(V ,s),a,c,prod(V ,d)) | {trans(s,a,c,d) ∈ [[E2]]}

while the AC compiler generates [[E1]] ∪ [[E2]]. Since rules common to [[E1]] and
[[E2]] occur only once in [[E]], the number of transition rules for E is reduced.

The use of AC unification can lead to an exponential reduction in the size of
the state space. Even in examples that do not display explicit symmetry, state-
space reductions by factors of two or more can be seen (Section 5). The number
of transition rules generated is also reduced, by more than a factor of two in
most examples.

The AC unification operation itself is currently programmed in Prolog and is
considerably more expensive than Prolog’s in-built unification operation. As will
be seen in Section 5, the overhead due to AC unification can be reduced (by a
factor of five or more) through the use of AC matching and indexing techniques
based on discrimination nets [2].

5 Performance Results

We used several model-checking benchmarks to evaluate the performance of
the MMC compiler. All reported results were obtained on an Intel Xeon 1.7GHz
machine with 2GB RAM running Debian GNU/Linux 2.4.21 and XSB version 2.5
(with slg-wam and local scheduling and without garbage collection).

Benchmark 1: Chains of one-place buffers. This example was chosen for three
reasons. (1) We can use it to easily construct large state spaces: a chain of
size i has a state space of size O(2i). (2) The example is structured such that
any performance gains due to compilation are due strictly to the compact state
representation, thereby allowing us to isolate this optimization’s effect. (3) This
example does not involve channel passing, thereby enabling us to see how MMC
with compilation compares performance-wise to XMC.

The graphs of Figure 2 show the time and space requirements of the origi-
nal MMC model checker, MMC with compiled transition rules, and the XMC

124 Ping Yang et al.

Table 1. (a)Number of states and transitions for variants of Handover protocol. (b)
Performance of MMC for model checking variants of Handover protocol.

(a)
Instance States Transitions

Orig Comp AC Orig Comp AC
1bsp 104 58 29 164 86 43
2bsp 607 408 76 1033 636 130
3bsp 3373 2304 224 5725 3600 416
2ms N/A 73344 5026 N/A 227712 15461

(b)
Instance Prop. Time (Sec.) Memory (MB)

Orig Comp AC AC-net Orig Comp AC AC-net
1bsp df 0.04 0.09 0.10 0.09 1.28 1.58 1.37 1.26

ndl 0.04 0.07 0.15 0.09 1.42 1.60 1.39 1.27
2bsp df 0.55 0.31 0.44 0.31 7.46 4.02 2.12 1.99

ndl 0.86 0.31 0.42 0.30 9.69 4.44 2.21 2.06
3bsp df 4.69 1.04 1.20 0.74 49.30 10.15 2.78 2.60

ndl 6.90 1.13 1.21 0.76 64.77 16.51 3.06 2.82
2ms df N/A 47.01 75.64 33.72 N/A 276.29 24.70 24.47

ndl N/A 54.45 80.17 31.93 N/A 340.31 30.69 24.85

system (with compiled transition rules) to verify deadlock freedom in chains of
varying length. As expected, MMC with compilation outperforms the original
MMC model checker both in terms of time and space. Moreover, MMC with
compilation approaches the time and space performance of XMC: the mecha-
nisms needed to handle channel passing in MMC appear to impose an overhead
of about 20% in time and 40% in space.

Benchmark 2: Handover procedure. Table 1(a) gives the number of states and
transitions generated by three versions of MMC for four variants of the handover
procedure of [18]; the four versions differ in the number of passive base stations
(bsp) and mobile stations (ms). The column headings “Orig”, “Comp”, and
“AC” refer to the original version of MMC, MMC with compilation, and MMC
with compilation and AC reduction, respectively. The results show that MMC
with compilation and AC reduction generates the fewest number of states and
transitions whereas MMC without compilation generates the most. This is due
to the fact that the performance of MMC with compilation is insensitive to the
placement of the ν operator.

Table 1(b) presents the time and memory needed to verify the deadlock-
freedom (df) and no-data-lost (ndl) properties of the handover protocol. Col-
umn heading “AC-net” refers to the version of MMC with AC discrimination
nets; the other column headings are as in Table 1(a). Observe that MMC with
compilation is more efficient and has superior scalability compared to MMC
without compilation. Also observe that the use of AC unification reduces the
number of states visited by up to a factor of 20 and space usage by a similar
factor, although a concomitant increase in CPU time can be seen. The use of

A Provably Correct Compiler for Efficient Model Checking 125

Fig. 3. Effect of AC-based symmetry reduction on chains of web-servers.

AC discrimination nets, however, mitigates this overhead by reducing the num-
ber of AC unification operations attempted, resulting in uniformly better time
and space performance compared to all other schemes. Note that in the current
implementation, both the AC unification and indexing operations are written as
Prolog predicates while the non-AC unification and indexing operations use the
primitives provided in the Prolog engine. Engine-level support for AC unification
and indexing will result in further improvements in performance.

Benchmark 3: Variable-length chains of webservers (from [3]). This example
models a file reader of a webserver. The file is divided into several blocks and
each block is read and transmitted over the network by a separate process.
Blocks can be read in parallel but are required to be transmitted in sequential
order. Our AC-unification-based state-space reduction technique applied to this
benchmark results in a state space that grows quadratically with the length
of the chain, while non-AC techniques (compiled or original) result in a state
space that grows exponentially in size. Figure 3 shows the time and memory
requirements when the “order-preserved” property is verified on this example.
MMC with compilation and AC unification performs best in terms of time, space,
and scalability. Note that independent of the number of servers, the AC compiler
generates the same number of transition rules (65). The discrimination net-based
indexing improves the time and space performance even further.

Benchmark 4: Security protocols specified using the spi-calculus. Table 2(a)
gives the number of states and transitions generated by three versions of MMC
for three security protocols specified in the spi-calculus: Needham-Schroeder,
Needham-Schroeder-Lowe and BAN-Yahalom. Observe that MMC with compi-
lation and AC generates the fewest number (or the same as MMC with compi-
lation) of states and transitions, whereas MMC without compilation generates
the most. As mentioned above, this is because MMC without compilation is
sensitive to the placement of ν operator. Table 2(b) gives the time (as x + y
where x is the compilation time and y is the model-checking time) and memory
consumed when model checking these protocols. Compilation (with or without
AC discrimination nets) yields an order of magnitude of improvement in time
usage and a factor of 10-35% improvement in memory usage. The performance
of MMC with AC is similar to that of MMC with AC discrimination nets and
is not given in the table.

126 Ping Yang et al.

Table 2. (a) Number of states and transitions for the spi-calculus examples. (b) Per-
formance of MMC for model checking the spi-calculus examples.

(a)

Benchmark States Transitions
Orig Comp AC-net Orig Comp AC-net

Needham-Schroeder 167 164 164 287 282 282
Needham-Schroeder-Lowe 108 105 105 181 176 176
BAN-Yahalom 29133 6674 2011 107652 18106 5322

(b)

Benchmark Prop. Time (Sec.) Memory (MB)
Orig Comp AC-net Orig Comp AC-net

Needham-Schroeder attack 0.02 0.07+0.01 0.09+0.02 0.70 1.03 1.12
Needham-Schroeder
-Lowe no attack 0.22 0.08+0.01 0.11+0.02 1.93 1.16 1.23
BAN-Yahalom interleaving attack 0.11 0.16+0.01 0.18+0.01 2.15 1.89 1.67

replay attack 0.14 0.16+0.00 0.18+0.01 2.88 1.78 1.65

6 Conclusions

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proceedings of CCS, pages 36–47. ACM Press, 1997.

2. L. Bachmair, T. Chen, and I.V. Ramakrishnan. Associative-commutative discrim-
ination nets. In TAPSOFT, pages 61–74, 1993.

3. S. Chaki, S.K.Rajamani, and J. Rehof. Types as models: model checking message-
passing programs. In Proceedings of POPL, pages 45 – 57, 2002.

4. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20–74, January 1996.

A Provably Correct Compiler for Efficient Model Checking 127

5. M. Dam. Proof systems for pi-calculus logics. Logic for Concurrency and Synchro-
nisation, 2001.

6. G. Delzanno and S. Etalle. Transforming a proof system into Prolog for verifying
security protocols. In LOPSTR, 2001.

7. G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of Tools and
Algorithms for Construction and Analysis of Systems, 1999.

8. Y. Dong, X. Du, G. Holzmann, and S. A. Smolka. Fighting livelock in the i-
Protocol: A case study in explicit-state model checking. Software Tools for Tech-
nology Transfer, 4(2), 2003.

9. Y. Dong and C. R. Ramakrishnan. An optimizing compiler for efficient model
checking. In Proceedings of FORTE, pages 241–256, 1999.

10. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods
in System Design: An International Journal, 9(1/2):105–131, August 1996.

11. G. Gupta and E. Pontelli. A constraint based approach for specification and veri-
fication of real-time systems. In IEEE Real-Time Systems Symposium, 1997.

12. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

13. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1–3):121–163, 2004.

14. H. Kirchner and P.-E. Moreau. Promoting rewriting to a programming language:
a compiler for non-deterministic rewrite programs in associative-commutative the-
ories. J. Functional Prog., 11(2):207–251, 2001.

15. H. Lin. Symbolic bisimulation and proof systems for the π-calculus. Technical
report, School of Cognitive and Computer Science, U. of Sussex, UK, 1994.

16. J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.
17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and

II. Information and Computation, 100(1):1–77, 1992.
18. F. Orava and J. Parrow. An algebraic verification of a mobile network. Journal of

Formal Aspects of Computing, 4:497–543, 1992.
19. B. C. Pierce and D. N. Turner. Pict: a programming language based on the pi-

calculus. In Proof, Language, and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

20. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. L.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In
Proceedings of CAV. Springer, 1997.

21. H. Song and K. J. Compton. Verifying pi-calculus processes by Promela translation.
Technical Report CSE-TR-472-03, Univ. of Michigan, 2003.

22. M. E. Stickel. A unification algorithm for associative-commutative unification.
Journal of the ACM, 28(3):423–434, 1981.

23. L. Urbina. Analysis of hybrid systems in CLP(R). In Constraint Programming
(CP), 1996.

24. B. Victor. The Mobility Workbench user’s guide. Technical report, Department
of Computer Systems, Uppsala University, Sweden, 1995.

25. XSB. The XSB logic programming system v2.5, 2002. Available under GPL from
http://xsb.sourceforge.net.

26. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of the π-
calculus: Model checking mobile processes using tabled resolution. In Proceedings
of VMCAI, 2003. Extended version in Software Tools for Technology Transfer,
6(1):38-66,2004.

An Ordered Logic Program Solver

Davy Van Nieuwenborgh�, Stijn Heymans, and Dirk Vermeir��

Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
Telephone: +32495939799, Fax: +3226293525

{dvnieuwe,sheymans,dvermeir}@vub.ac.be

Abstract. We describe the design of the OLPS system, an implementation of the
preferred answer set semantics for ordered logic programs. The basic algorithm
we propose computes the extended answer sets of a simple program using an
intuitive 9-valued lattice, called T9. During the computation, this lattice is em-
ployed to keep track of the status of the literals and the rules while evolving to
a solution. It turns out that the basic algorithm needs little modification in order
to be able to compute the preferred answer sets of an ordered logic program. We
illustrate the system using an example from diagnostic reasoning and we present
some preliminary benchmark results comparing OLPS with existing answer set
solvers such as SMODELS and DLV.

Keywords: Preference, Answer Set Programming, Implementation

1 Introduction

In answer set programming (see e.g. [2] and the references therein), one uses a logic
program to modularly describe the requirements that must be fulfilled by the solutions
to a problem. The solutions then correspond to the models (answer sets) of the program,
which are usually defined through (a variant of) the stable model semantics [13]. The
technique has been successfully applied in problem areas such as planning [14, 6, 7],
configuration and verification [20], diagnosis [5, 17, 24], game theory [25], updates [8]
and database repairs [1, 15].

The extended answer set semantics for, possibly inconsistent, simple programs (con-
taining only classical negation) is defined by allowing rules to be defeated (not satis-
fied). An ordered logic program then consists of a simple program with a partial order
on the rules, representing a preference for satisfying certain rules, possibly at the cost
of violating less important ones. Such a rule preference relation induces an order on
extended answer sets, the minimal elements of which are called preferred answer sets.
It can be shown [18] that the resulting semantics has a similar expressiveness as dis-
junctive logic programming, e.g. the membership problem is ΣP

2 -complete. Ordered
programs have natural applications in e.g. database repair [15] or diagnosis [17, 24].

� Supported by the FWO.
�� This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 128–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Ordered Logic Program Solver 129

This paper describes the design and implementation of the OLPS system that can be
used to compute the preferred answer sets of ordered programs. It is organized as fol-
lows: after a brief overview of the preferred answer set semantics for ordered programs
(Section 2), we present the OLPS system in Section 3. Section 4 discusses an algorithm,
based on partial interpretations, to compute the extended answer sets of a simple (un-
ordered) program. In Section 5, this algorithm is adapted to take into account the rule
order, and compute only preferred answer sets. Finally, Section 6 contains the results of
some preliminary experiments and directions for further research.

The OLPS system has been released under the GPL and is available for download
from http://tinf2.vub.ac.be/olp.

2 Preferred Answer Sets for Ordered Programs

Preliminaries and Notation. A literal is an atom a or a negated atom ¬a. For a literal
l we use ¬l to denote its inverse, i.e. ¬l = ¬a iff l = a while ¬l = a iff l = ¬a.
For a set of literals X , we use ¬X to denote {¬l | l ∈ X}. Such a set is consistent iff
X∩¬X = ∅. In addition, we also consider the special symbol⊥ denoting contradiction.
Any set X ∪ {⊥}, with X a set of literals, is inconsistent. For a set of atoms A, we use
LA to denote the set of literals over A and define L⊥

A = LA ∪ {⊥}.
A rule r is of the form hr ← br where br, the body of the rule, is a set of literals and

hr, the rule’s head, is a literal or⊥. In the latter case, the rule is called a constraint1, in
the former case, it is called a hr-rule.

For a set of rules R we use R� to denote the unique smallest Herbrand model, see
[22], of the positive logic program obtained from P by considering all literals and ⊥ as
separate atoms.

Simple Logic Programs and Extended Answer Sets. A simple logic program (SLP)
is a countable set of rules. For a SLP P , we use BP to denote its Herbrand base, i.e.
the set of atoms appearing in the rules of P . An interpretation for P is any consistent
subset of LBP . For an interpretation I and a set of literals X we write I |= X just when
X ⊆ I .

A rule r = hr ← br is satisfied by I , denoted I |= r, iff hr ∈ I whenever I |= br,
i.e. whenever r is applicable (I |= br), it must be applied (I |= br∪{hr}); r is defeated
by I , denoted I |= ¬r iff there is an applied competing rule r′ = ¬hr ← br′ . Note that,
consequently, constraint rules cannot be defeated.

The semantics defined below deals with possibly inconsistent programs in a simple,
yet intuitive, way: when faced with contradictory applicable rules for l and ¬l, one
selects one, e.g. the l-rules, for application and ignores (defeats) the contradicting ¬l-
rules.

Let I be an interpretation for a SLP P . The reduct of P w.r.t. I , denoted PI is the
set of rules satisfied by I , i.e. PI = {r ∈ P | I |= r}. An interpretation I is called an
extended answer set of P iff I is founded, i.e. P �

I = I , and each rule r in P is either
satisfied or defeated, i.e. ∀r ∈ P · I |= r ∨ I |= ¬r.

1 To simplify the theoretical treatment we use an explicit contradiction symbol ⊥ in the head
of constraint rules. The concrete OLPS syntax employs the usual notation where the head of a
constraint is empty.

130 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Example 1. The program P1 shown below has 2 extended answer sets {¬a, b} and
{a,¬b} corresponding to the reducts {c, r¬a, ra, rb} and {c, r¬b, ra, rb}, respectively.

r¬a : ¬a ← ra : a ← ¬b r¬b : ¬b ←
rb : b ← ¬a c : ⊥ ← ¬a,¬b

Ordered Programs and Preferred Answer Sets. An ordered logic program (OLP) is
a pair 〈R, <〉 where R is a simple program and < is a well-founded strict2 partial order
on the rules in R3.

Intuitively, r1 < r2 indicates thats r1 is preferred over r2. The notation is extended
to sets of rules, e.g. R1 < R2 abbreviates

∧
r1∈R1∧r2∈R2

r1 < r2.
The preference < on rules in 〈R, <〉 will be translated to a preference relation on

the extended answer sets of R via an ordering on reducts: a reduct R1 is preferred over
a reduct R2, denoted R1 ! R2 iff ∀r2 ∈ R2\R1 ·∃r1 ∈ R1\R2 ·r1 < r2, i.e. each rule
from R2\R1 is “countered” by a rule in R1\R2. It can be shown (Theorem 6 in [15]) that
! is a partial order on 2R. Consequently, we write R1 � R2 just when R1 ! R2 but
R1 �= R2. The !-order on reducts induces a preference order on the extended answer
sets of R: for extended answer sets M1 and M2, M1 ! M2 iff RM1 ! RM2 . Minimal
(according to �) extended answer sets of R are called preferred answer sets of 〈R, <〉.
An extended answer set is called proper iff it satisfies all minimal elements from R.

Example 2. Consider the ordered program below, which is written using the OLPS-
syntax: ¬ is written as “-” and rules are grouped in modules that are partially ordered
using statements of the form “A < B”.

Avoid { pass :− study . study . }
Prefer { −study . }
ForSure { −pass :− −study . pass :− −pass . }
ForSure < Prefer < Avoid

The program expresses the dilemma of a person preferring not to study but aware
of the fact that not studying leads to not passing (-pass :- -study) which is un-
acceptable (pass :- -pass). It is straightforward to verify that the single (proper)
preferred answer set is {study, pass}which satisfies all rules in ForSure and Avoid,
but not the rules in Prefer.

In [15, 16] it is shown that OLP can simulate negation as failure (i.e. adding nega-
tion as failure does not increase the expressiveness of the formalism) as well as dis-
junction (under the minimal possible model semantics) and that e.g. membership is
ΣP

2 -complete. This makes OLP as expressive as disjunctive logic programming under
its normal semantics. However, as with logic programming with ordered disjunction[4],
no effective translation is known in either direction.

2 A strict partial order < on a set X is a binary relation on X that is antisymmetric, anti-reflexive
and transitive. The relation < is well-founded if every nonempty subset of X has a <-minimal
element.

3 Strictly speaking, we should allow R to be a multiset or, equivalently, have labeled rules, so
that the same rule can appear in several positions in the order. For the sake of simplicity of
notation, we will ignore this issue: all results also hold for the general multiset case.

An Ordered Logic Program Solver 131

3 The Ordered Logic Program Solver (OLPS) System

OLPS computes (a selection of) the proper preferred answer sets of a finite ordered
program which is described using a sequence of module definitions and order assertions.
A module is specified using a module name followed by a set of rules, enclosed in braces
while an order assertion is of the form m0 < m1 < . . . < mn, n > 0, where each mi,
0 ≤ i ≤ n is a module name.

Rules are written as usual in datalog, with a few exceptions: variables must start
with an uppercase letter and classical negation (¬) is represented by a “-” in front
of a literal, e.g. -p(X,a). In addition, some convenient syntactic sugar constructs
can be used in non-grounded programs. E.g. rules such as t({1,2-4,a}). abbrevi-
ate t(1).t(2).t(3).t(4).t(a). and variables can be “typed”, where a type is
a unary predicate: e.g. p(X:t) :- q(Y:r,Z). abbreviates p(X) :- q(Y,Z),
t(X), r(Y).

The example program in Figure 1 describes the operation of a unary adder, as shown
in Figure 2 [12]. It illustrates how ordered programs can be used to implement diagnos-
tic systems [17].

Error { fault (N:gate , F: fault). } % May be needed to explain observation.
Default { − fault (N:gate , F: fault). % By default, gates are not faulty.
−adder(X:bit , Y:bit , Z: bit , Sum:bit , Carry: bit). % Naf for adder/5.
}

Model { bit ({0, 1}). gate({xor1 , xor2 , and1 , and2 , or1}).
fault ({ stuck at 0 , stuck at 1 }).
xor(N:gate ,0,0,1) :− fault (N, stuck at 1). xor(N:gate ,1,1,1) :− fault (N, stuck at 1).
xor(N:gate ,0,1,0) :− fault (N, stuck at 0). xor(N:gate ,1,0,0) :− fault (N, stuck at 0).
and(N:gate ,1,1,0) :− fault (N, stuck at 0). and(N:gate ,1,0,1) :− fault (N, stuck at 1).
and(N:gate ,0,1,1) :− fault (N, stuck at 1). and(N:gate ,0,0,1) :− fault (N, stuck at 1).
or(N:gate ,1,1,0) :− fault (N, stuck at 0). or (N:gate ,1,0,0) :− fault (N, stuck at 0).
or(N:gate ,0,1,0) :− fault (N, stuck at 0). or (N:gate ,0,0,1) :− fault (N, stuck at 1).
% Normal model
adder(X:bit , Y:bit , Z: bit , Sum:bit , Carry: bit) :−

xor(xor1 , X,Y,S), xor(xor2 , Z,S,Sum), and(and1 , X,Y,C1), and(and2 , Z,S,C2),
or(or1 , C1,C2,Carry).

% Normal behaviour of gates.
xor(N:gate , 1,1,0). xor(N:gate , 0,1,1). xor(N:gate , 1,0,1). xor(N:gate , 0,0,0).
and(N:gate , 1,1,1). and(N:gate , 1,0,0). and(N:gate , 0,1,0). and(N:gate , 0,0,0).
or(N:gate , 1,1,1). or(N:gate , 1,0,1). or(N:gate , 0,1,1). or(N:gate , 0,0,0).

}
Observations { :− −adder (0,0,1,0,1). }
Model < Default < Error

Fig. 1. A program for circuit diagnosis.

Intuitively, observations are represented using constraints, and rules describing the
normal operation of the system are preferred over “fault rules” that specify possible ab-

132 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

X

Y

Z

S

Sum

Carry

C1

C2

xor1

and1

and2

xor2

or1

Fig. 2. Unary adder [12] described in the program of Figure 1.

normal behaviors. Here, the adder-rule in Model describes the normal operation of
the circuit where variables correspond to the connections between the gates, which are
named in the gate/1-predicate. It is assumed that a broken gate may have a fixed out-
put, whatever its inputs. This leads to the introduction of two constants stuck at 0
and stuck at 1 (defined in the fault/1 rules) and a specification of the behav-
ior of the various gate types when they are stuck using rules such as xor(N:gate,
0, 0, 1) :- fault(N, stuck at 1). The Default module specifies that
fault/2 and adder/5 are false by default (Model< Default).

To add diagnostic capabilities, it suffices to add another weaker module Error that
contains rules that should only be used “as a last resort”.

The observation of a malfunctioning circuit is described using a constraint, e.g.
:- -adder(0,0,1,0,1) forces OLPS to find an explanation for adder(0,0,1,
0,1). To this end, some rules in Default will need to be defeated by applying some
weaker rules from Error. As shown in [17], each preferred answer set will contain a
(subset) minimal set of fault/2 literals.

Running OLPS on the example using the command4

olps -p ’fault/2’ -n 0 circuit.olp

will compute the possible minimal explanations shown below.

{ + fault (xor1 , stuck at 1) }
{ + fault (or1 , stuck at 1) + fault (xor2 , stuck at 0) }
{ + fault (and2 , stuck at 1) + fault (xor2 , stuck at 0) }
{ + fault (and1 , stuck at 1) + fault (xor2 , stuck at 0) }

Like SMODELS[21], OLPS first produces a grounded version of the program that
then serves as input to the solver proper. The default grounding5, olpg, produces all
(some are, however, optimized away) the instances of rules that are used in the compu-
tation of the minimal answer set of the positive program, obtained by considering all
literals as separate atoms.

4 The “-p” option is used to print only the fault/2 predicate, “-n 0” will cause the system
to compute all proper preferred answer sets.

5 The grounding program runs as a separate process and can be selected at run time.

An Ordered Logic Program Solver 133

4 Computing Extended Answer Sets for Simple Programs

Partial Interpretations

OLPS searches for answer sets by building and extending partial interpretations that
carry intermediate information regarding the status of literals and rules. To represent
such information on literals, we use the lattice T9 of truth values depicted in Figure 3.
Intuitively, T9 can be considered as an extension of FOUR from [3, 19] with approxima-
tions6

� t and � f of resp. t and f , denoting that a literal must eventually become resp.
true or false at the end of the computation in order for a partial interpretation to result
in an extended answer set. Further, we use not t and not f as explicit representations of
the complements of t and f . Clearly, the order � in T9 corresponds to the “knowledge”
ordering[3,19], i.e. t1 � t2 indicates that t1 is more determined than t2.

not f

� f� t

not t

t f

⊥

u

Intuition
⊥ Contradiction.
� No information.
t True.
f False.
� t Eventually true.
� f Eventually false.
not t Not true.
not f Not false.
u Neither true nor false.

t ¬t

⊥ ⊥
� �
t f
f t

� t � f

� f � t
not t not f
not f not t
u u

Fig. 3. Truth value lattice T9.

The general idea behind the usage of T9 is to start with � (“no information”) for
each literal and evolve during the computation towards either t, f , u or ⊥, taking the
knowledge ordering � into account. When, at the end of the computation, a partial
interpretation assigns either t, for u to each literal, we have found an extended answer
set.

Definition 1. A T9-valuation on a set of atoms A is a total function φ assigning a
truth value φ(a) to each a ∈ A; it is extended to literals over A by defining φ(¬a) =
¬φ(a), for a ∈ A. A valuation φ is consistent iff φ−1(⊥) = ∅. It is final iff it assigns
only to truth values that cannot be improved without introducing contradiction, i.e.
∀t �∈ {t, f ,u} · φ−1(t) = ∅.

The order in T9 induces a partial ordering on valuations: φ1 extends φ2, denoted
φ1 ! φ2, iff φ1(a) ! φ2(a) for all a ∈ A. Intuitively, φ1 � φ2 (i.e. φ1 ! φ2 and
φ1 �= φ2) if φ1 is more determined than φ2.

T9-valuations will be represented as sets of extended literals where an extended
literal is a literal or of one of the forms � l or not l, with l an ordinary literal. For an

6 The notation � t should not be confused with the “always” modality from modal logic.

134 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

extended literal e, we use ê to denote the underlying atom, i.e. ¬̂a = â = a, while

�̂ l = n̂ot l = l̂. For a set of extended literals E, Ê abbreviates {ê | e ∈ E}. The set of
all extended literals over a set of atoms A is denoted EA while E⊥A = EA ∪ {⊥}. For a
set of literals X , �X abbreviates {� x | x ∈ X}.

We associate a truth value v(e) from T9 with an extended literal e, where ê = a,
in the obvious way: v(a) = t, v(not a) = not t and v(� a) = � t while v(¬a) =
¬(v(a)) = f , v(not¬a) = ¬v(not a) = not f and v(�¬a) = ¬v(� a) = � f . Using v,
we can interpret a set E of extended literals as a valuation φE by defining

φE(a) = "{v(e) | e ∈ E ∧ ê = a}

where, by definition, "∅ = �. E.g., if E = {�a, a, not b, not ¬b, � c, not c} is a set
of extended literals over {a, b, c, d} then φE(a) = t, φE(b) = u, φE(c) = ⊥ and
φE(d) = �. A set of extended literals E is consistent and/or final iff φE is consistent
and/or final. Obviously, if E1 ⊆ E2, then φE2 ! φE1 .

A set of extended literals E1 extends a set E2, denoted E1 ! E2 iff φE1 ! φE2 . A
conservative extension of a set of extended literals E is any superset E′ ⊇ E that pre-
serves the associated valuation, i.e. φE′ = φE . Since the set of conservative extensions
of a set of extended literals is closed under union, we can define the closure E of a set
of extended literals E as the unique maximal conservative extension of E. E.g., the clo-
sure of E = {� a, a, not b, not¬b, � c, not c} is E = {�a, a, not¬a, not b, not¬b, � c,

�¬c, c,¬c, notc, not¬c} . It can be shown that, for sets of extended literals E1 and E2,
E1 ! E2 iff E2 ⊆ E1.

For a set of extended literals E we write that E |= F , with F a set of extended
literals, iff F ⊆ E.

In the sequel, we will often abuse notation by considering a set of rules R also as a
set of atoms (disjoint from BR), one for each rule r ∈ R, thus defining e.g. LR.

Definition 2. A partial interpretation of a simple program R is a set I ⊆ LR ∪ E⊥BR
.

Intuitively, the rule literals IR = I∩LR represent the desired status of the rules from R:
if r ∈ IR then r should be satisfied while ¬r ∈ IR indicates that r should be defeated.
IL = I ∩ EBR represents a valuation of BR. The reduct of R w.r.t. I , denoted RI is
defined by RI = {r | r ∈ IR}. A partial interpretation I is

– complete iff ÎR = R, i.e. each rule has a desired status;
– consistent iff ⊥ �∈ I , both IR and φIL are consistent and, moreover, there exists

a final consistent extension F ! IL such that ∀l ∈ IR · F ∩ LBR |= l, i.e. IR is
consistent with IL;

– final iff φIL is final; and
– founded iff (RI)� = IL ∩ L⊥

BR
.

A partial interpretation J extends a partial interpretation I , denoted I ! J iff IR ∪
IL ⊆ JR ∪ JL.

Note that a partial interpretation need not be consistent. It is easily seen that !
defines a partial order on partial interpretations and that all extensions of an inconsistent
partial interpretation are themselves inconsistent.

Extended answer sets correspond to partial interpretations that are complete, con-
sistent, final and founded.

An Ordered Logic Program Solver 135

Proposition 1. Let R be a simple program. If M is an extended answer set of R then

ΠR(M) = RM ∪ ¬(R\RM) ∪M ∪
⋃

a∈BR\M̂
{not a, not ¬a}

is a partial interpretation that is complete, consistent, final and founded. Conversely,
I ∩ LBR is an extended answer set for any partial interpretation I that is complete,
consistent, final and founded.

Note that the last component of ΠR(M) corresponds to a version of the closed world
assumption: any literal l for which no information is available is assumed to be “neces-
sarily unknown”, i.e. φΠR(M)(l) = u.

A rule r is blocked w.r.t. a set of extended literals E iff ∃l ∈ br · E |= not l. If r is
not blocked w.r.t. E, it is said to be open. We use Rh(E) to denote the sets of h-rules
from R that are open w.r.t. E. An open rule r is applicable w.r.t. E iff E |= � br, it is
applied iff it is applicable, hr �= ⊥, and, moreover, E |= �hr.

For a given partial interpretation I , we need an operator Φ�
R(I) to compute the

maximal deterministic extension of I . This operator is based on the primitive notion
of forcing, that, for a partial interpretation I and a single rule r, defines which new
information can be deterministically derived from I and r.

Definition 3. A partial interpretation I for an SLP R forces a set of (extended or rule)
literals J , denoted I � J iff X � J (and I fulfills the extra condition, if any) for some
X ⊆ IR ∪ IL where � is defined below.

� {r} if hr = ⊥ (1)

{¬r} � � br ∪ {�¬hr} if hr �= ⊥ (2)

{not ¬hr} � {r} (3)

{r} ∪ � br � {� hr} if hr �= ⊥ (4)

{r} ∪ � br � {⊥} if hr = ⊥ (5)

{r} ∪ br � {hr} (6)

� br ∪ {not hr} � {¬r} (7)

{� hr} � {r} ∪� br if Rhr(IL = I ∩ EBR) = {r} (8)

� (br\{b}) ∪ {r, not hr} � {not b} if b ∈ br (9)

� (br\{b})∪ {r} � {not b} if b ∈ br and hr = ⊥ (10)

� {not hr} if hr �= ⊥ and Rhr (IL) = ∅ (11)

{not b} � {r} if b ∈ br (12)

Intuitively, (1) asserts that constraints cannot be defeated while (2) encodes the def-
inition of defeat: ¬r, i.e. r is defeated, iff r is applicable but ¬hr is implied by some
defeating rule. Consequently, if ¬hr cannot be true, the rule r must be satisfied (3).
Definitions (4,5) and (6) encode (satisfied) rule application while (7) expresses that an
applicable rule that cannot be applied must be defeated. Definition (8) indicates that if
only a single rule is available to motivate a needed literal, it must eventually become
applied. On the other hand, an almost applicable satisfied rule with a conclusion that is

136 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

inconsistent with the interpretation must be blocked (9,10). If there are no open rules
for a literal a, then not a must hold (11). Finally, a blocked rule must be satisfied (12).

Definition 4. Let R be a finite simple program. The operator ΦR is defined by ΦR(I) =
I ∪

⋃
I�X X , for any partial interpretation I . The closure Φ�

R of ΦR is defined by
Φ�

R(I) =
⋃

n>0 Φn
R(I).

It can be shown that Φ�
R(I) is unique and extends I , i.e. I ! Φ�

R(I).
Clearly, Φ�

R(I) computes the maximal deterministic extension of a partial interpre-
tation I . It encompasses the Fitting operator[11] and plays a similar role as does the
function det cons in DLV[9], or expand in SMODELS[21].

Example 3. Reconsider program P1 from Example 1 and the interpretation I = {r¬a}.
The table below illustrates a possible computation of Φ�

P1
(I).

{r¬a} � {¬a} (6) {¬r¬b} � {� b} (2)
� {c} (1) {� b} � {rb, �¬a} (8)

{c,¬a} � {not ¬b} (10) {not ¬b} � {ra} (12)
{not ¬b} � {¬r¬b} (7) on r¬b {rb,¬a} � {b} (6) on rb

Thus, Φ�
P1

(I) = {r¬a,¬r¬b, ra, rb, c,¬a, b} = ΠP1({¬a, b}).
Consistency is easy to check for fixpoints of ΦR.

Proposition 2. Let I be a partial interpretation of a simple program R such that
ΦR(I) = I . Then I is consistent iff ⊥ �∈ I and both IR and IL are consistent.

The following is an easy consequence of (6) in Definition 3.

Proposition 3. Let I be a partial interpretation of a simple program R. If I is founded
then so is Φ�

R(I).

Complete founded fixpoints of ΦR have no consistent founded proper extensions.

Proposition 4. Let I be a consistent complete founded partial interpretation of a sim-
ple program R such that ΦR(I) = I . Then J = I for all I ! J such that J is consistent
and founded.

Replacing an interpretation I by Φ�
R(I) does not loose any answer sets.

Proposition 5. Let I be an interpretation of a simple program R. Any extended answer
set M of R that extends I , i.e. I ! ΠR(M), also extends Φ�

R(I), i.e. Φ�
R(I) ! ΠR(M).

The following example shows that consistent maximal (and thus complete) founded
extensions are not necessarily final.

Example 4. Consider the simple program P2 shown below and the empty partial inter-
pretation.

r0 : ¬a ← r1 : b ← a r2 : c ← b
r3 : a ← c r4 : ⊥ ← ¬a

It is straightforward to verify that Φ�
P2

(∅) = {r4,¬r0, r1, r2, r3, not ¬a, � a, � b, � c}
does not correspond to an extended answer set (in fact, P2 does not have any extended
answer sets). Intuitively, r0 cannot be defeated because the only possible motivation for
a is based on a circularity.

An Ordered Logic Program Solver 137

A set such as {�a, � b, � c} in Example 4 is called unfounded7. Formally, a set X ,
X ⊆ �LBP , is unfounded w.r.t. a partial interpretation I iff, for any � l ∈ X , each
non-blocked (w.r.t. I) l-rule r contains a literal d ∈ br such that � d ∈ X . It can be
shown that if I contains an unfounded set, then there are no extended answer sets among
its extensions. This result is used in the prune function from Figure 4.

The aset Procedure

The main procedure for enumerating extended answer sets that are extensions of a given
partial interpretation is shown in Figure 4. Note that the select function returns an arbi-
trary rule from its argument set.

PartialInterpretation
prune(const Program& R, PartialInterpretation I) {
J = Φ�

R(I);
if (J contains an unfounded set)

J = J ∪{⊥};
return J;
}

set< Interpretation >
aset (const Program& R, PartialInterpretation I) {
// Precondition: I is founded and ΦR(I) = I .
if (! I is consistent) // Easy to check because of Proposition 2.
return ∅; // There are no answer sets extending I.

if (I is complete) {
if (I is final) // I corresponds to an answer set by Proposition 1.
return {I ∩ (BR ∪ ¬BR)};

else return ∅; // By Proposition 4, there are no answer sets extending I.
}

else {
Rule r = select (R\ÎR);
// The preconditions for the calls are assured by Proposition 3..
return aset(R, prune(I ∪ {r}) ∪ aset(R, prune(I ∪ {¬r});
}

}

Fig. 4. The aset function for simple programs.

Proposition 6. Let R be a simple program and let I be a founded fixpoint of ΦR. Then
aset(R, I) will return all extended answer sets of R that extend I .

From Proposition 6, it follows that all extended answer sets of R can be obtained using
the call aset(R, Φ�

R(∅)).
7 We use the term “unfounded” in this context since the intuition behind it is similar to un-

founded sets in the well-founded semantics[23].

138 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

The implementation of Φ�
R uses a queue of pattern occurrences, each pattern corre-

sponding to the left hand side of one of the rules in Definition 3. The queue is processed
by adding the right hand side of the pattern to the partial interpretation, thus possibly
generating further patterns for the queue. The computation finishes when an inconsis-
tency is detected or the queue becomes empty. This design is sound because a pattern
remains applicable in any consistent extension of the partial interpretation where it was
first detected. Detection is facilitated by keeping some derived information such as the
number of “open” literals in rule bodies, the number of open rules for a given literal etc.

5 Computing Preferred Answer Sets

A naive way to compute preferred answer sets would be to compute all extended answer
sets and then retrieve the minimal (according to �) elements.

OLPS tries instead to detect (and prune) partial interpretations that cannot lead to
preferred answer sets as soon as possible. This is done by (a) always extending a partial
interpretation I using a minimal rule (among the “open” rules), and (b) checking, for
each previously found preferred answer set M , whether it is still possible to find a set
of rules N ⊆ R such that {r ∈ R | r ∈ IR} ⊆ N and RM �� N .

In this context, a module8 X ⊆ R is said to be decided by a partial interpretation I
when, by abuse of notation, X ⊆ ÎR, i.e. each rule r ∈ X has a status in I . Further, two
partial interpretations I and J are equal w.r.t. a module X iff IX = JX , i.e. they have
the same status for the rules in X .

For a complete partial interpretation I and an arbitrary partial interpretation J , we
say that I is incomparable w.r.t. J iff there exist a module X ⊆ R such that

– (JX ∩X)\(IX ∩X) �= ∅, i.e. J has at least one satisfied rule in X that is defeated
by I; and

– every module Y ⊆ R with Y < X is decided by J and, moreover, I and J are
equal w.r.t. Y .

On the other hand, I is stronger than J iff for each module X which is such that I and
J are equal w.r.t. all more preferred modules Y < X9, it holds that

– (X ∩ JX) � (X ∩ IX) i.e. I satisfies strictly more rules in X than does J ; and
– (X\Ĵ) ⊆ I , i.e. all rules in X that have not yet a status in J are satisfied w.r.t. I .

The following are easy consequences of the above definitions.

Proposition 7. Let I be a complete partial interpretation and let J be a partial inter-
pretation. I incomparable w.r.t. J implies that RIL �� RKL for every extension K of
J .

Proposition 8. Let I be a complete partial interpretation and let J be a partial inter-
pretation. I stronger than J implies that RIL � RKL for every extension K of J .

8 We use the term module, just as in the syntax of OLPS, to denote a maximal set of rules X ⊆ R
that are all at the same position in the well-founded strict partial order on R. Clearly, this order
on rules induces an equivalent order on the modules.

9 This implies that Y is decided by J .

An Ordered Logic Program Solver 139

Clearly, checking incomparability or being stronger can be performed, even in the
absence of optimization, in linear time and space (w.r.t. the size of the program).

Importing these checks into an adapted version of the prune function, as shown in
Figure 5 ensures an early detection of a situation where no extended answer sets that
extend I can be minimal.

〈PartialInterpretation , set < CompletePartialInterpretation >〉) {
preferred prune (const Program& R,

〈PartialInterpretation I, set < CompletePartialInterpretation > P 〉) {
J = Φ�

R(I);
if (J contains an unfounded set) {

J = J ∪{⊥};
return 〈J, P 〉;

}
for each T ∈ P {
if T incomparable w.r.t . J

P = P \{T}; // Due to Proposition 7.
else if T stronger than J {

J = J ∪{⊥}; // Due to Proposition 8.
return 〈J, P 〉;

}
}
return 〈J, P 〉;
}

Fig. 5. The preferred prune function for ordered programs.

The procedure for finding preferred answer sets is shown in Figure 6. It can be
shown that, if I is founded and ΦR(I) = I , then preferred aset(R,〈I, P 〉) will re-
turn the set of all minimal (according to �) extended answer sets M of R that ex-
tend I and such that no T ∈ P exists for which T � M holds. It follows that pre-
ferred aset(R,〈Φ�

R(∅), ∅〉) computes all preferred answer sets of 〈R, <〉10.

6 Conclusions and Directions for Further Research

Some preliminary tests of the current implementation have been conducted on a 2GHz
Linux PC. The results are shown in Table 1: circuit refers to the program of Figure 1
while ham-N and ham-dN refer to programs that solve the Hamiltonian circuit problem
on a randomly generated graph with N nodes and N2/10, resp. N2/2, edges. Note that
the latter problem is ΣP

1 -complete and thus directly solvable by both SMODELS, DLV

and OLPS. In [15] a transformation is presented of non-disjunctive seminegative pro-
grams into ordered programs where the preferred answer sets of the latter coincide with
the classical subset minimal answer sets of the former. We have used this transformation
to conduct our experiments with OLPS. It is clear from the table that the current naive

10 Proper preferred answer sets are obtained by preferred aset(R,〈Φ�
R(Rmin), ∅〉), with Rmin

contains the (atoms corresponding to the) <-minimal elements of R.

140 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

set< Interpretation >
preferred aset (const Program& R,

〈PartialInterpretation I, set < CompletePartialInterpretation > P 〉) {
// Precondition: I is founded and ΦR(I) = I .
if (! I is consistent) // Easy to check because of Proposition 2.
return ∅; // There are no answer sets extending I.

if (I is complete) {
if (I is final) // I corresponds to an answer set by Proposition 1.
return {I ∩ (BR ∪ ¬BR)};

else return ∅; // By Proposition 4, there are no answer sets extending I.
}

else {
Rule r = select min (R\ÎR);
// Note that n � m for any n ⊇ (R ∪ {¬r}), m ⊇ (R ∪ {r}).
set< Interpretation > M = preferred aset (R, preferred prune (〈I ∪ {r}, P 〉));
return M ∪ preferred aset(R, preferred prune(〈I ∪ {¬r}, P ∪ M〉));
}

}

Fig. 6. The preferred aset function for ordered programs.

Table 1. Preliminary performance tests.

input olpg OLPS lparse SMODELS DLV

circuit 0m02.536s 0m00.154s NA NA NA
ham-50 0m00.176s 0m00.060s 0m00.072s 0m00.084s 0m00.084s
ham-d50 0m04.465s 0m01.537s 0m00.118s 0m00.670s 0m06.613s
ham-60 0m00.245s 0m00.081s 0m00.086s 0m00.135s 34m14.371s
ham-d60 0m07.807s 0m03.553s 0m00.202s 0m02.103s 0m23.051s
ham-70 0m00.368s 0m00.124s 0m00.109s 0m00.216s 0m00.815s
ham-d70 0m12.882s 0m11.030s 0m00.265s 0m04.513s 0m57.121s
ham-80 0m00.533s 0m00.162s 0m00.145s 0m00.313s 0m00.276s
ham-d80 0m20.078s 0m35.501s 0m00.418s 0m11.050s 1m55.984s
ham-90 0m00.788s 0m00.248s 0m00.175s 0m00.468s 0m00.512s
ham-d90 0m29.781s 1m36.511s 0m00.429s 0m17.944s 3m57.191s
ham-100 0m01.326s 0m00.395s 0m00.228s 0m00.764s 0m01.164s
ham-d100 2m20.249s 54m04.504s 0m00.881s 2m30.887s 47m08.002s
ham-200 0m01.190s 0m00.459s 0m00.684s 0m02.937s 570m12.123s

grounder program olpg should be improved considerably: it performs much worse than
lparse11. On the other hand, on the sparser graphs, olps performs similarly or slightly
better than smodels, while on the dense graphs OLPS performs worse. The reason for the
latter is subject to further research. For dlv only total (grounding and solving) figures
are shown. Clearly, these tests are anecdotal and only a wider comparison on a range
of applications can lead to firm conclusions. Nevertheless, we believe that the prelim-

11 The fact that olpg outputs source code while lparse uses an efficient binary format does not
help.

An Ordered Logic Program Solver 141

inary results are encouraging. One could argue that a similar approach can be used to
compare OLPS with DLV on ΣP

2 -complete problems, however, at the moment there is
no known transformation between ordered programs and disjunctive programs in either
direction, as is also the case with e.g. logic programming with ordered disjunction[4].

Future versions should investigate the use of heuristics[10]. Currently, select min
(Figure 6), simply picks a minimal “open” rule that has a minimal number of undecided
body literals. The use of more sophisticated heuristics by select min and the detection
and exploitation of certain special cases in other parts of the system could improve
performance considerably. Finally, adding support for negation as failure (directly or
through the construction used in [16]) would make it easy to add new front-ends for
e.g. LPOD[4].

References

1. M. Arenas, L. Bertossi, and J.Chomicki. Specifying and querying database repairs using
logic programs with exceptions. In Procs. of the 4th International Conference on Flexible
Query Answering Systems, pages 27–41. Springer-Verlag, 2000.

2. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

3. N. D. Belnap. A useful four-valued logic. In Modern uses of multi-valued logic, pages 8–37.
D. Reidel Publ. Co., 1975.

4. G. Brewka. Logic programming with ordered disjunction. In Proc. of the National Confer-
ence on Artificial Intelligence, pages 100–105. AAAI Press, 2002.

5. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system. AI
Communications, 12(1-2):99–111, 1999.

6. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowl-
edge. In Procs. of the International Conference on Computational Logic (CL2000), volume
1861 of LNCS, pages 807–821. Springer, 2000.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. The DLVk planning system. In
Logic in Artificial Intelligence, volume 2424 of LNAI, pages 541–544. Springer Verlag, 2002.

8. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates of logic programs.
In Logic in Artificial Intelligence, volume 1919 of LNAI, pages 2–20. Springer Verlag, 2000.

9. W. Faber, N. Leone, and G. Pfeifer. Pushing goal derivation in DLP computations. In
Logic Programming and Non-Monotonic Reasoning, volume 1730 of LNAI, pages 177–191.
Springer Verslag, 1999.

10. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for answer set program-
ming. In Proc. of the International Joint Conference on Artificial Intelligence, pages 635–
640. Morgan Kaufmann, 2001.

11. M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of logic programming,
4:295–312, 1985.

12. P. Flach. Simply Logical - Intelligent Reasoning by Example. Wiley, 1994.
13. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Procs.

of the Intl. Conf. on Logic Programming, pages 1070–1080. MIT Press, 1988.
14. V. Lifschitz. Answer set programming and plan generation. Journal of Artificial Intelligence,

138(1-2):39–54, 2002.
15. D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic programs.

In Logic in Artificial Intelligence, volume 2424 of LNAI, pages 432–443. Springer Verlag,
2002.

142 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

16. D. Van Nieuwenborgh and D. Vermeir. Order and negation as failure. In Procs. of the Intl.
Conference on Logic Programming, volume 2916 of LNCS, pages 194–208. Springer Verlag,
2003.

17. D. Van Nieuwenborgh and D. Vermeir. Ordered diagnosis. In Procs. of the Intl. Conf. on
Logic for Programming, Artificial Intelligence, and Reasoning, volume 2850 of LNAI, pages
244–258. Springer Verlag, 2003.

18. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic pro-
grams. Theory and Practice of Logic Programming (TPLP), page Accepted for publication,
2004.

19. T. Przymusinski. Well-founded semantics coincides with three-valued stable semantics. Fun-
damenta Informaticae, 13:445–463, 1990.

20. T. Soininen and I. Niemelä. Developing a declarative rule language for applications in prod-
uct configuration. In Procs. of the Intl. Workshop on Practical Aspects of Declarative Lan-
guages, volume 1551 of LNCS, pages 305–319. Springer Verslag, 1999.

21. T. Syrjänen and I. Niemelä. The smodels system. In Procs. of the Intl. Conf. on Logic Pro-
gramming and Nonmonotonic Reasoning, volume 2173 of LNCS, pages 434–438. Springer-
Verlag, 2001.

22. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the Association for Computing Machinery, 23(4):733–742, 1976.

23. Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. Journal of the Association for Computing Machinery, 38(3):620–
650, 1991.

24. Davy Van Nieuwenborgh and Dirk Vermeir. Ordered programs as abductive systems.
In Proceedings of the APPIA-GULP-PRODE Conference on Declarative Programming
(AGP2003), pages 374–385, Regio di Calabria, Italy, 2003.

25. M. De Vos and D. Vermeir. Choice Logic Programs and Nash Equilibria in Strategic Games.
In Computer Science Logic, volume 1683 of LNCS, pages 266–276. Springer Verslag, 1999.

Improving Memory Usage in the BEAM

Ricardo Lopes1 and Vı́tor Santos Costa2

1 DCC-FC & LIACC, University of Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

Tel. +351 226078830, Fax. +351 226003654
rslopes@dcc.fc.up.pt

2 COPPE/Sistemas, Universidade Federal do Rio de Janeiro, Brasil
vitor@cos.ufrj.br

Abstract. A critical issue in the design of logic programming systems
is their memory performance, both in terms of total memory usage and
locality in memory accesses. BEAM, as most modern Prolog systems,
requires both good emulator design and good memory performance for
best performance. We report on a detailed study of the memory manage-
ment techniques used on our sequential implementation of the EAM. We
address questions like how effective are the techniques the BEAM uses to
recover and reuse memory space, how garbage collection affects perfor-
mance and how to classify and unify variables in a EAM environment.
We also propose a finer variable allocation scheme to reduce memory
overheads that is quite effective at reducing memory pressure, with only
a small overhead.

Keywords: Logic Programming, Extended Andorra Model, Memory
Management, Language Implementation.

1 Introduction

The BEAM or Basic Implementation of the Extended Andorra Model, is a first
sequential implementation of the core rewriting rules from David H. D. War-
ren’s Extended Andorra Model with Implicit Control [19]. We have designed
the BEAM to be an extension of a traditional Prolog system, YAP [16], so that
users can take advantage of the more flexible control strategy in the BEAM as
a complement to a traditional Prolog environment.

Our first goal in designing the BEAM was to study the feasibility of Warren’s
design for the EAM. Initial results [10] do indeed show that our prototype is be-
tween 3 to 10 times slower than YAP on applications with the same search space
(YAP is recognised as one of the fastest currently available Prolog systems [16]).
This is reasonable considering the extra overheads of the EAM and the fact that
implementation technology for Prolog is by now rather mature. On the other
hand our results also show that considerable improvements can be achieved in
the search-space. Compounded with the potential for parallelism, we believe our
initial results agree with Warren’s intuition for the EAM.

The BEAM requires an explicit representation of the search-tree and cannot
therefore reuse space after backtracking, as traditional Prolog does. Memory

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 143–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 Ricardo Lopes and Vı́tor Santos Costa

management is thus a very fundamental issue in the BEAM and decisions on
the subject permeate the whole system. In this study we discuss the memory
management scheme used in the BEAM, addressing three main questions:

1. How to classify and unify variables in a EAM environment?
2. How effective are the techniques BEAM uses to recover and reuse space?
3. How to optimize variable allocation in the BEAM?

We study the performance of the reuse and garbage collector algorithms on a set
of benchmarks. Our study raises interesting questions on the interplay between
the garbage collector and the system caches. Our experience also allows us to
propose new optimisation for variable allocation in the BEAM.

The paper is organised as follows. First, we present the basic concepts of the
BEAM. Next, we focus on the memory management of the system, we explain the
methods used to recover memory space and we present some performance results
of BEAM running with different memory configurations. Finally, we propose a
new variable allocation scheme that optimises memory usage and we evaluate
the effectiveness of the proposed mechanism.

2 BEAM Concepts

We briefly present the BEAM, an implementation of the main concepts in
Warren’s Extended Andorra Model with Implicit Control, with several refine-
ments [10, 13]. The BEAM model has been implemented for the Herbrand do-
main, although the EAM does support other constraint domains [17, 8].

A BEAM computation is a series of rewriting operations, performed on
And-Or Trees. And-Or Trees contain two kinds of nodes: and-boxes represent
a conjunction of positive literals, and store goals G1, . . . , Gn, new variables
X1, . . . , Xm, and a set of constraints σ; or-boxes represent alternative clauses.
Figure 1 shows an example of BEAM And-Or Tree. The top node is an and-box:
it includes three local variables X, Y and Z. We say that a variable is local to
an and-box Δ when first defined in Δ, and external to Δ otherwise. The and-
box also includes two goals to execute, parent(X, Y) and parent(X, Z), and an
empty set of constraints σ on external variables.

The two circles below corresponds to or-boxes. Or-boxes are created by the
reduction rule, that given a sub-goal in an and-box generates a set of alternatives
for that goal. Notice that or-boxes require relatively little information, except
for the number of alternatives.

Last, the four and-boxes below are said to be suspended. In this case, we
show only the constraints they are trying to impose on external variables. In
general, an and-box Δ suspends if the computation on Δ cannot progress deter-
ministically (when there is more than one successful candidate for the goal), and
if Δ is trying to impose bindings on external variables. The BEAM thus follows
the Andorra principle: it delays non-deterministic execution as long as possible.

Execution in the EAM thus proceeds as a sequence of rewrite operations on a
And-Or Tree. The most important rules are based on Warren’s original rules: goal

Improving Memory Usage in the BEAM 145

parent(X,Y) parent(Y,Z)X,Y,Z {}

X=david
Y=john

X=mike
Y=david

Y=david
Z=john

Y=mike
Z=david

suspended
on X, Y

suspended
on X, Y

suspended
on Y, Z

suspended
on Y, Z

Fig. 1. An axample of BEAM and-or tree

reduction, upward propagation of deterministic bindings, downward propagation
of new bindings on local variables, and non-deterministic reduction. These rules
are designed to be correct and complete. Towards efficiency the BEAM also
implements simplification rules that allow one to recognise failed or successful
computation, and optimises common cases of computations (see [13]).

2.1 BEAM Architecture

Figure 2 illustrates the architecture organization for the BEAM execution model.
The BEAM was built on top of the YAP Prolog system [10]. It reuses most of
the YAP compiler and its builtin library. The shadowed boxes show where the
EAM stores data. The Code Space holds the database, including the compiled
logic program, information on predicates, and the symbol-table. The BEAM uses
this data-area in much the same way as traditional Prolog Systems. This area is
largely static during execution.

The Global Memory stores the And-Or Tree that is manipulated during the
execution of logic programs. This area further subdivides into the Heap and
the Box Memory. The Box Memory stores dynamic data structures including
boxes and variables. The Heap uses term copying to store compound terms and
is thus very similar to the WAM’s Heap [18]. The major difference is that on
the BEAM, Heap memory cannot be recovered after backtracking. A garbage
collector is thus necessary to recover space in this area.

The And-Or Tree Manager handles most of the complexity in the EAM. It
uses the Code Space area to determine how many alternatives a goal has and
how many goals a clause calls. With this information the And-Or Tree Manager
constructs the tree and uses the EAM rewriting rules to manipulate it. The
Manager requests memory for the boxes from the Global Memory Areas. The
Emulator is called by the And-Or Tree Manager in order to execute and unify
the arguments of the goals and clauses. As an example consider the clause:
p(X,Y):- g(X), f(Y). When running this clause the And-Or Tree Manager
transforms the p(X,Y) into one and-box, and calls the Emulator to create the
subgoals and or-boxes for g(X) and f(Y). Control returns to the And-Or Tree
Manager if the boxes need to suspend.

More details on how BEAM stores the And-Or Tree, the design of the Emu-
lator and of the And-or Tree manager can be found in [12].

146 Ricardo Lopes and Vı́tor Santos Costa

Code
Space

EAM
bytecode

And-Or-Tree
Manager

Global Memory Areas

Abstract
Machine
Emulator

Garbage
Collector

YAP Prolog to
WAM compiler

YAP
built-ins

HEAP BOXED-MEM

Fig. 2. Execution model

3 Memory Management

Standard WAM [5] implementations follow a stack discipline, where space can be
recovered during backtracking. The EAM control strategy is much more flexible.
The BEAM must carefully detect the points where to recover space. As we show
next, we have two techniques to recover space: we can reuse space for pruned
boxes and we can garbage collect useless data.

3.1 Reusing Space in the And-Or Tree

The Box Memory must satisfy intensive requests for the creation of and-boxes,
or-boxes, local variables, external references, and suspension lists. Objects are
small and most, but not all, will have short lifetimes. Objects are created very
frequently and minimizing allocation and deallocation overheads is crucial.

In order to address this problem, Prolog systems traditionally use a stack
based discipline and rely on backtracking and garbage collection to recover
space [2, 4]. Unfortunately, we cannot recover space through backtracking. In-
stead we explicit maintain liveness of data structures, and rely on a hybrid
memory allocation algorithm to allocate space:

1. We keep a top of stack and an array of n buckets, one per sizes i, 1 ≤ i ≤ n,
all initially set to empty.

2. To allocate a block we check whether bucket i has a free block. Otherwise
we allocate the block from the top of the stack.

3. To release a block of size i we add it to the front of the list for bucket i.

The BEAM is therefore able to recover all memory from boxes whenever
they fail or succeed. Memory from failed boxes can obviously be recovered since
they do not add any knowledge to the computation. Memory from succeeding
boxes can also be recovered because the BEAM unification rules, guarantee that

Improving Memory Usage in the BEAM 147

and-box variables cannot reference variables within the box subtree, that is,
younger box variables can reference variables in upper boxes, but not the other
way around.

We have chosen this scheme because it has a low overhead and most requests
tend to vary between a relative small number of sizes. To prove so, we have stud-
ied our algorithm with a small group of known benchmarks detailed on table 1.
The first four benchmarks are deterministic, and the rest are non-deterministic.

Table 1. The benchmarks

Name Description

nreverse naive reverse of a 30-element list.
qsort quick-sort of a 50-element list using difference lists.
kkqueens smart finder of the solutions for the n-queens problem.
tak heavily recursive with lots of simple integer arithmetic.

houses logical puzzle based on constraints.
query finds countries with approximately equal population density.
zebra logical puzzle based on constraints.
scanner a program to reveal the content of a box.
queens-9 finds all safe placements of 9-queens on 9 ∗ 9 chessboard.

In the query and zebra benchmarks, we also consider the version of the
BEAM with eager splitting, ES. With eager splitting, producer goals reduce
immediately, even if non-determinate, instead of delaying until all determinate
operations have been implemented [7, 10].

Table 2 shows how our algorithm performs for the benchmark set. The Mem-
ory requests column shows how much memory was requested. The Local Vars
column shows how much memory was spent on storing variables. This column
shows that in most cases variable allocation takes a large percentage of total
Box memory usage. The Reuse column shows the percentage of memory that
was served from the free lists, and the Memory used shows the real size of mem-
ory used by each benchmark. The algorithm has almost no memory reuse for
the deterministic nreverse benchmark, where the abstract machine itself reuses
and-boxes through our implementation of the nested and-boxes simplification
rule [13]. On the other hand, we achieve reuse rates greater than 90% in the
zebra, and queens-9 benchmarks. Hence, reuse is very effective in applications
where the BEAM often prunes branches, such as in search applications, thus
providing the advantages of backtracking to same extent.

To emphasize our point, note that in the queens-9 benchmark, boxed mem-
ory had a total of 176Mb of memory requests, and about 98% of those requests
were served from previously used memory. Thus we only required 3Mb of Box
Memory throughout our computation.

3.2 Variable and Boxes

As we have seen, each and-box maintains a collection of local variables and
constraints. Variables are represented as slots, and constraints are represented

148 Ricardo Lopes and Vı́tor Santos Costa

Table 2. Box memory reuse

Benchmark Requested Local Vars Reuses Memory used

nreverse 33Kb 84% 4.13% 32Kb
qsort 82Kb 47% 59.51% 33Kb
kkqueens 41005Kb 46& 49.27% 20800Kb
tak 24599Kb 45% 72.47% 6773Kb
houses 558Kb 49% 84.02% 89Kb
query 2108Kb 7% 85.40% 308Kb
query-ES 435Kb 32% 90.14% 43Kb
zebra 5806Kb 38% 94.41% 325Kb
zebra-ES 2296Kb 38% 91.82% 188Kb
scanner 2687Kb 75% 64.86% 944Kb
queens-9 180140Kb 70% 98.34% 2982Kb

as handles to a memory-value pair. Note that the EAM deterministic promotion
rule allows constraints to move upwards in the tree. It is interesting to explore
how Box memory is used for variable storage.

Figure 3 details the BEAM’s memory usage for the queens benchmark. The
graphic shows the longevity (X axis) of boxes and of variables. We define longevity
as the amount of time a box or a variable survives. We measure time in ticks,
where each tick is a call to the memory allocator. We thus assume the number
of calls to the memory allocator is constant throughout execution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Boxes Variables

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 3. Boxes and variables longevity

This graphic clearly shows that more than 70% of boxes live less than 5% of
the runtime. In contrast, local variables are close to equally distributed: half of
these variables live less than 50% of the runtime, and the other half lives longer.

We can conclude that, at least for this non-determinate benchmark, the live-
ness of boxes is usually very short, and much shorter than the duration of vari-
ables. Indeed, at the end, only a mere 2% of boxes survive more than 95% of the
total execution time. On the other hand, local variables do seem to live longer.

Improving Memory Usage in the BEAM 149

In contrast to the memory usage for boxes, there are very few local variables to
live less than 5% of the execution time. Moreover, most local variables seem to
live for about half of the computation.

This graphic explains clearly why recovering box space is indeed fundamental
to a EAM implementation. In this search application, most boxes live for a short
time. Although local variables do live longer, a substantial percentage of space
should thus be recoverable during the computation, as demonstrated in practice.

In practice, memory requests can still grow through the computation and
exhaust the Box Memory. If the originally available Box Memory ends, the
system can expand the Box Space by requesting more memory from the OS.

3.3 Recovering Heap Space
The algorithm used to reuse memory space in the Box Memory will not work for
the Heap because the BEAM releases memory eagerly, and he released objects
in the Heap tend to be very small, causing fragmentation and leaving only small
blocks available. We could coalesce blocks to increase available block size [6], but
the price would be an increase in overheads. Instead, we have chosen to rely on
a garbage collector to compact the Heap Memory.

We implemented a copying garbage collector [9, 3] for the BEAM: living data
structures are copied to a new memory area and the old memory area is released.
The Heap memory is divided into two equal halves, growing in the same direction.
The two halves could not grow in the opposite direction because the BEAM uses
YAP builtins, and they expect the Heap to always grow upwards. Therefore
we have a pre-defined limit-zone that, when reached, will activate the garbage
collection mechanism by setting the garbage collector flag.

The garbage collection flag is periodically checked by the And-Or Tree man-
ager to activate garbage collection.

Thus, the garbage collector starts by replicating the living data in the root
of the And-Or Tree and then follows a top-down-leftmost approach.

The advantage of a stop-and-copy garbage collector implementation is that
the execution time for the garbage collection is proportional to the amount of
data in use by the system. In contrast, the mark-and-sweep garbage collection
algorithm has execution time proportional to the original stacks. The main dis-
advantage of a copying algorithm is that the system can only use part of the
total memory available. We do not use generational garbage collection [1, 15]
because the percentage of garbage cells is very high, as we shall discuss next.

Table 3 shows how effective garbage collection is on average for queens-9.
Essentially, the working size for this benchmark is around 40KB for Heap. In-
creasing stack space allows delaying garbage collection and results in very good
effectiveness for the Heap. In general this behavior is similar on other programs.
We can conclude that garbage collection is hus mostly useful at recovering Heap
memory as we do not reuse Heap otherwise.

3.4 Performance Analysis
We have chosen the queens-9 benchmark for a deeper analysis of BEAM memory
management. We have experimented with different memory configurations:

150 Ricardo Lopes and Vı́tor Santos Costa

Table 3. Average effect of garbage collection for queens-9

MEM Heap
Config before after recovered

1Mb 526,903 34,203 93.51%
2Mb 1,051,371 33,925 96.77%
4Mb 2,099,569 34,051 98.38%
8Mb 4,197,191 32,225 99.23%
16Mb 8,390,564 32,401 99.61%
32Mb 16,778,753 31,728 99.81%
64Mb 33,555,428 31,994 99.90%
128Mb 67,112,556 41,588 99.94%

– BEAM-OnlyGC: uses the garbage collector to recover memory in the Box Mem-
ory and Heap.

– BEAM-HybGC: use our hybrid algorithm (see section 3.1) to reuse memory in
the Box Memory and the garbage collector to recover memory in the Heap.

– BEAM-GCHybGC: use our hybrid algorithm to reuse memory in the Box Mem-
ory and the garbage collector to recover memory on Heap. Moreover, in this
version, whenever the garbage collector is recovering Heap memory, it also
compacts the data on the Box Memory.

Table 4 shows the three different BEAM versions running the queens-9
benchmark with several memory configurations. The time is presented in mil-
liseconds, and the number of invocations to the garbage collector is presented
in brackets (X+Y). X being the number of garbage collections activated by Box
Memory overflows and Y the number of garbage collections activated by Heap
overflows. The timings were measured running the benchmark on a Intel
Pentium-M Banias 1.6Ghz with 1024Kb on chip cache and on a Intel Pentium-4
Willamette 1.7Ghz with 256Kb on chip cache. Both systems have a 4*100Mhz
FSB, were equipped with 1Gb RAM and running Mandrake Linux 10. Note that,
although queens-9 is an example where the BEAM can outperform Prolog by
limiting the search space [12], the BEAM still depends on garbage collection to
run this benchmark on most of the memory configurations used.

First, some considerations about the memory configurations. All three sys-
tems used the same amount of Heap memory on each run. Note that 128MB
for the heap means that the system is using two halves of 64Mb alternately,
switching during garbage collection. BEAM-OnlyGC reserves for the box memory
the same amount available for the Heap. BEAM-HybGC runs with only 3Mb for the
Box Memory, while the BEAM-GCHybGC runs with 6Mb for the Box memory (again
using only 3Mb alternately between garbage collections). Finally, we should re-
mark that garbage collections on BEAM-OnlyGC were activated by Box Memory
overflows, and that on BEAM-HybGC and BEAM-GCHybGC the garbage collections
were activated by Heap overflows.

The table entry with 400Mb stack size is specially important because all
systems can run without garbage collections, allowing us to observe the overhead

Improving Memory Usage in the BEAM 151

Table 4. BEAM running queens-9 with different memory configurations

queeens9 BEAM-OnlyGC BEAM-HybGC BEAM-GCHybGC

Heap Mem Time GC Time GC Time GC

1Mb 1,572 (382+0) 1,320 (0+253) 1,379 (0+253)
2Mb 1,492 (182+0) 1,290 (0+122) 1,342 (0+122)

1 4Mb 1,429 (89+0) 1,293 (0+60) 1,314 (0+60)
0 8Mb 1,396 (44+0) 1,289 (0+30) 1,284 (0+30)
2 16Mb 1,373 (22+0) 1,288 (0+14) 1,271 (0+14)
4 32Mb 1,349 (11+0) 1,282 (0+7) 1,262 (0+7)

Kb 64Mb 1,310 (5+0) 1,282 (0+3) 1,272 (0+3)
L2 128Mb 1,271 (2+0) 1,272 (0+1) 1,266 (0+1)

256Mb 1,240 (1+0) 1,265 (0) 1,262 (0)
400Mb 1,228 (0) 1,265 (0) 1,262 (0)

1Mb 2,050 (382+0) 1,909 (0+253) 1,960 (0+253)
2Mb 1,854 (182+0) 1,862 (0+122) 1,842 (0+122)

2 4Mb 1,761 (89+0) 1,849 (0+60) 1,783 (0+60)
5 8Mb 1,720 (44+0) 1,825 (0+30) 1,770 (0+30)
6 16Mb 1,705 (22+0) 1,833 (0+14) 1,771 (0+14)

Kb 32Mb 1,695 (11+0) 1,843 (0+7) 1,783 (0+7)
64Mb 1,699 (5+0) 1,840 (0+3) 1,783 (0+3)

L2 128Mb 1,728 (2+0) 1,840 (0+1) 1,827 (0+1)
256Mb 1,698 (1+0) 1,820 (0) 1,819 (0)
400Mb 1,720 (0) 1,820 (0) 1,819 (0)

that our Hybrid algorithm for reusing space in the box memory has on the
system. Indeed, from these results is it possible to observe that the algorithm
implies a minor 3% to 5% slowdown in the system. Not a big price to pay
attending that it allow us to run the queens-9 benchmark with only 3Mb of
memory whereas without it, the system requires 400Mb for the box memory.

It is interesting to compare the results obtained with the two machines with
similar architectures, but different caches. Note that in both machines, the sys-
tem will run the garbage collector the same number of times. It is interesting to
analyze the two extreme data-points: 256Kb L2 versus 1024Kb L2. The num-
bers show that, although the Pentium-M has a slower CPU clock cycle, its L2
cache makes the day. A second interesting remark is that the BEAM-OnlyGC when
running in the smaller cache CPU, beats the other two versions in almost every
run. This result shows that having the garbage collector compacting more often
the living data structures in memory can have advantages for lower specs CPU’s
with less cache. Moreover, on the 1024Kb L2 CPU, the throne is divided. On the
higher stack sizes, the BEAM-OnlyGC is faster, which results, as we have already
stated, from the overhead the other two systems have in using the algorithm to
reuse space in the Box memory. On the lower stack sizes (4Mb and less), the
BEAM-HybGC, behaves better, meaning that the cache size still compensates for
the extra work the other systems do in compacting the Box memory. Finally, on
the other stack sizes, BEAM-GCHybGC behaves better. These results are interesting

152 Ricardo Lopes and Vı́tor Santos Costa

specially when comparing BEAM-GCHybGC and BEAM-HybGC. These two versions
differ only in the fact that the BEAM-GCHybGC, compacts the living structures in
the box memory during garbage collection. Having better performance on the
BEAM-GCHybGC shows that, despite doing more code, having the data structures
compacted can benefit in the long run. Moreover, this raises the question of how
much the L2 caches affect general system performance.

Our main conclusion is that the impact of garbage collection on execution
time is not very significant on this example. Indeed, garbage collection can be
advantageous due to the fact that it compacts the living data structures, allow-
ing the cache to behave better (confirming results previously observed on [11]).
Moreover, even with more code to execute, BEAM-GCHybGC performed in most
cases better than the BEAM-HybGC version. This results also confirm our ap-
proach of using a simple memory allocator leaving compression for the garbage
collector.

4 Optimizing Variable Allocation

Variables are a major source of memory pressure. In the initial implementation of
the BEAM, all variables were processed the same way. Every and-box maintains
a list of its local variables, and every variable would be in some and-box. Lets
refer to these variables as permanent variables.

value *home *suspensions value ...

var 1 var 2

*andbox

*next

*andbox

*next

...pointer to
AND-BOX

Fig. 4. Local variables representation

The actual implementation is illustrated in Figure 4. A variable either belongs
to a single subgoal in an and-box, or it is shared between subgoals. The value
field stores the current working value for a variable. Variables also maintain a list
of and-boxes suspended on them, and points back to their home and-box. The
suspensions field is important because, whenever a local variable is constrained,
binding propagation is performed by sending a signal to all and-boxes that are
suspended on that variable. All and-boxes that received the signal become aware
that they must perform a consistency check of the constraints recently generated
with their constraints composing their environment. The home field determines
whether a variable is local or external to an and-box.

4.1 Compile-Time Variable Classification
Processing all variables the same way has major drawbacks. Namely, during
the execution of a program there is a large portion of memory that can only

Improving Memory Usage in the BEAM 153

be released when the and-boxes fail or succeed. This problem was evidenced in
Figure 3. Boxes have a very short lifetime, while variables live longer.

The complexity of variable implementation can also harm system perfor-
mance. Consider one of the main rules of the EAM, Promotion, used to promote
the variables and constraints from an and-box Δ to the nearest and-box Δ′

above. Δ must be a single alternative to the parent or-box, as shown in Fig. 5.

X σ

θ

σθ

Y

A G B

W

X,Y

A G B

W

Fig. 5. BEAM promotion rule

As in the original EAM promotion rule, promotion propagates results from
a local computation to the level above. However, promotion in the BEAM does
not merge the two and-boxes because the structure of the computation may be
required towards pruning [14].

During the promotion of permanent variables, the field home field of the
variable structure needs to be updated so that it points to the new and-box Δ′.
There is an overhead in this operation since one must go through the list of all
permanent variables of Δ. Moreover if Δ′ is promoted later, the system will have
go through Δ′ variables including all that it has inherited during promotions.
Thus, is obvious that the list of permanent variables can grow very fast when
promoting boxes, slowing down the BEAM.

Therefore, we would like to classify some variables as temporary, meaning
that they would be used to create an and-box, and that they do no need support
for suspension. Doing so would save memory and gain in performance since
managing temporary variables is simpler than dealing with permanent variables.

4.2 Classification of Variables at Compile and Run-Time

Unfortunately, in general we do not know beforehand if we will need to suspend
on a variable. Next, we propose a WAM-inspired scheme, the BEAM-Lazy.
Like in the WAM, variables that appear only in the bodies of clauses or in
queries are classified at compile time as permanent variables, meaning that all
data-structures required for suspension are created for them. All others variables
are classified on compile time as temporary. Further, variables that are needed
to create compound terms in write mode need not to be permanent.

As an example, consider the second clause of the nreverse:

nreverse([X|L0],L) :- nreverse(L0,L1), concatenate(L1,[X],L).

154 Ricardo Lopes and Vı́tor Santos Costa

For this clause, L1 is the only variable that is classified as permanent at
compilation time. The other variables are classified as temporary. Thus, whenever
BEAM creates a and-box for this clause, it will only need to create one permanent
variable and three temporary variables. One, it may need to create two more
permanent variables, X and L0, when the clause is called with the first argument
as variable (unify var in write mode).

The advantage of this classification, is that classifying a group of variables as
temporary requires less memory and also improves performance since we avoid
managing the more complex structure of the permanent variables. Another ad-
vantage gained when using temporary variables is that they can be immediately
released after executing all the put instructions in the clause body, unlike per-
manent variables that can only be released when the and-box succeeds or fails.
Most frequently, temporary variables will be released immediately before the call
for the last subgoal, acting similarly to the deallocate of environments in WAM
implementations.

One disadvantage of this classification of variables, is that the implementation
of the instructions in the abstract machine is more complex, with instructions
requiring extra tests to determine if the system needs to create new permanent
variables. Also, when deciding if the memory used by the temporary variables can
be released, there is an extra overhead for the system. Note that while WAM
Prolog systems follow a static goal order, the BEAM may choose to execute
the goals in a different order. Thus, the last goal may execute before previous
goals, so the rule of releasing the environment before calling the last goal is not
sufficient and cannot be used. The system must perform a test within every call,
to determine if the goal is the last one being executed within the clause.

4.3 Variable Unification Rules

The main consideration in implementing a unification algorithm that supports
both types of variables is that an and-box only suspends when trying to bind one
or more permanent variables external to the and-box. Some of these bindings
can be generated when unifying two variables. Although the EAM proposal did
not present details on variable to variable unification, the BEAM, as the WAM,
has an optimal form to unify two different variables in a EAM environment.

There are three possible cases of variable to variable binding:

1. temporary variable to permanent variable: in this case the unification should
makes the temporary variable refer to the permanent variable. An immediate
advantage is that the computation may not suspend. Moreover, unifying in
the opposite direction may lead to an incorrect state, since future derefer-
encing of the permanent variable would reference a temporary variable that
can unify without suspending the computation.

2. temporary variable to temporary variable: this case may never occur as when-
ever these variables are created they should, immediately unify with a perma-
nent variable. Thus, using the previous rule, a temporary variable is always
guaranteed to reference a permanent variable.

Improving Memory Usage in the BEAM 155

3. permanent variable to permanent variable: the permanent variable that has
its home box at a lower level of the tree should always reference the perma-
nent variable that has its home box closest to the root of the tree.

By following these unification rules one can often delay the suspension of an
and-box and thus delay application of the splitting rule. Note that Splitting is
the most expensive operation and in most cases we want to avoid it.

4.4 Results

This section compares the two schemes presented to classify variables in a EAM
environment. Our initial goal is to evaluate the memory usage of the new pro-
posed algorithm for classifying variables and to determine if there is an overhead
in the system due to the added complexity.

Since the analyses performed in section 3.4 have shown that the BEAM
is a memory intensive-system and its performance may largely depend on the
target machine’s cache/memory subsystem, we have chosen to use the Pentium-
M system with 1Mb of cache to run the tests. We have used the same set of
benchmarks presented in section Table 1. We recall that this set of benchmarks
is divided into deterministic programs: nreverse, qsort, kkqueens and tak),
and non-deterministic programs: houses, query, zebra, scanner and queens.

Table 5. BEAM-All vs BEAM-Lazy

BEAM-All BEAM-Lazy

Box Memory Box Memory
Bench. Heap Requests Reuses Heap Requests Reuses Perf.

nreverse 3.87Kb 33Kb 4.13% 3.87Kb 18Kb 50.43% -3.13%
nreverse-1000 3918Kb 33314Kb 0.14% 3918Kb 17650Kb 55.40% -4.60%
qsort 4.3Kb 82Kb 59.51% 4.3Kb 61Kb 61.72% 0%
qsort-1000 7820Kb 179742Kb 69.51% 7820Kb 140648Kb 66.62% -1.83%
kkqueens 3323Kb 41005Kb 49.27% 3323Kb 28730Kb 73.46% 2.50%
tak 559Kb 24599Kb 72.47% 559Kb 17642Kb 74.99% 0%

houses 153Kb 558Kb 84.02% 23Kb 278Kb 77.01% 133%
query 84Kb 2108Kb 85.40% 104Kb 2081Kb 71.86% 0%
query-ES 42Kb 435Kb 90.14% 61Kb 409Kb 83.93% -18%
zebra 4211Kb 5806Kb 94.41% 158Kb 4029Kb 60.65% 123%
zebra-ES 527Kb 2296Kb 91.82% 90Kb 1713Kb 79.47% 31%
scanner 5861Kb 2687Kb 64.86% 2510Kb 1121Kb 51.31% 121%
queens-9 122143Kb 180140Kb 98.34% 66113Kb 86834Kb 67.24% 76%

Results are shown in table 5. We consider the two versions of BEAM: BEAM-
All that classifies all the variables on compile-time as permanent and BEAM-Lazy
that classifies the variables on compile and run-time. For each version we present
three columns: the Heap memory used, the Box memory requested for boxes and
variables and the percentage of those requests served with reused memory. The

156 Ricardo Lopes and Vı́tor Santos Costa

last column evaluates the performance of the two systems. A positive value
represents that BEAM-Lazy is faster and a negative value that is slower.

Results show that the memory requests on Box Memory is significatively
less for BEAM-Lazy. Moreover, the memory used on the Heap is also favorably
influenced. One may wonder how creating less permanent variables reduces Heap
usage. When splitting, a subset of the and-or-tree is copied to another location of
the and-or-tree replicating living structures. Reducing the number of permanent
variables, that as we have shown live longer than the temporary variables, reduces
of the number of compound terms that need to be replicated in the Heap during
the split operation. On deterministic programs, where no splitting is executed,
the heap memory used is equal for both versions.

There are few cases where the memory requirements have increased. This
increase happens when there is a high number of variables being classified as
permanent on run-time. Note that initially BEAM-Lazy reserves only a pointer
for variables that later are classified as permanent. Later, when classifying the
vars as permanent, the abstract machine requests a new structure that uses
more 3 machine words. Thus it requests a total of 1+3 machine words for these
variables. Contrarily, BEAM-All requests immediately the permanent variable
structure when creating the and-box for the goal, thus only requiring 3 machine
words for each variable.

The performance numbers show that on deterministic benchmarks (nreverse,
qsort, kkqueens and tak), BEAM-Lazy has a small slow down, which is due
to the extra complexity of the abstract machine. On the other hand, on non-
deterministic programs, except for query, BEAM-Lazy has huge improvements.
Indeed, on houses, zebra and scanner, the system is more than twice faster.

5 Conclusions

We discuss several memory allocation issues in the BEAM, a first prototype
implementation of the Extended Andorra Model with Implicit Control. We rely
on two major data areas, the Box Memory and the Heap. Our results show that
box memory can be reused quite effectively by using a bucket-based memory
allocator, and our garbage collector is very effective at managing Heap space.
We observed that a significant amount of Box space is used to store variables.
We propose a finer variable allocation scheme to reduce memory overheads. Our
results show that the new scheme can be quite effective at reducing memory
pressure, with only a small overhead.

Costs might be reduced further if we could know at variable creation time
that a variable is always going to be bound deterministically, or if we would
know that we are going to bound the variable with an older variable. In some
cases we can do so from by looking at the indexing code. In general, to do so
would require global analysis of the logic program, and we are studying how
global analysis tools can be applied to this problem.

We are also working in integrating the BEAM with the current version of
the YAP Prolog system so that it can be made more widely available.

Improving Memory Usage in the BEAM 157

Acknowledgments

The work presented in this paper has been partially supported by project APRIL
(Project POSI/SRI/40749/2001) and funds granted to LIACC through the Pro-
grama de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and
Programa POSI.

References

1. K. A. M. Ali. A Simple Generational Real-Time Garbage Collection Scheme. New
Generation Computing, 16(2):201–221, 1998.

2. K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin. Garbage collection for Prolog
based on WAM. Communications of the ACM, 31(6):171–183, 1989.

3. J. Bevemyr and T. Lindgren. A simple and efficient copying garbage collector for
Prolog. Lecture Notes in Computer Science, 844:88–101, 1994.

4. L. F. Castro and V. Santos Costa. Understanding Memory Management in Prolog
Systems. In Proceedings of ICLP’01, November 2001.

5. B. Demoen and P. Nguyen. So Many WAM Variations, So Little Time. In LNAI
1861, Proceedings Computational Logic, pages 1240–1254. Springer, July 2000.

6. D. Detlefs, A. Dosser, and B. Zorn. Memory allocation costs in large C and C++
programs. Software, Practice and Experience, 24(6), 1994.

7. G. Gupta and D. H. D. Warren. An Interpreter for the Extended Andorra Model.
Technical report, Dep. of Computer Science, University of Bristol, November 1991.

8. J. Jaffar and M. Maher. Constraint Logic Programming: a Survey. The Journal
of Logic Programming, 19/20, May/July 1994.

9. R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley and Sons, July 1996. Reprinted February 1997.

10. R. Lopes. An Implementation of the Extended Andorra Model. PhD thesis, Uni-
versidade do Porto, December 2001.

11. R. Lopes, L. Castro, and V. Costa. From Simulation to Pratice: Cache Performance
Study of a Prolog Systems. ACM SIGPLAN Notices, 38(2):56–64, Feb. 2003.

12. R. Lopes, V. S. Costa, and F. Silva. A novel implementation of the extended an-
dorra model. In Pratical Aspects of Declarative Languages, volume 1990 of Lecture
Notes in Computer Science, pages 199–213. Springer-Verlag, March 2001.

13. R. Lopes, V. S. Costa, and F. Silva. On deterministic computations in the extended
andorra model. In 19th International Conference on Logic Programming, ICLP
2003, volume 2916 of LNCS, pages 407–421. Springer-Verlag, Dec. 2003.

14. R. Lopes, V. Santos Costa, and F. Silva. Prunning in the extended andorra model.
In Pratical Aspects of Declarative Languages:6th International Symposium, volume
3057 of LNCS, pages 120–134. Springer-Verlag, June 2004.

15. T. Ozawa, A. Hosoi, and A. Hattori. Generation Type Garbage Collection for
Parallel Logic Languages. In Proceedings of the North American Conference on
Logic Programming, pages 291–305. MIT Press, October 1990.

16. V. Santos Costa. Optimising bytecode emulation for prolog. In LNCS 1702, Pro-
ceedings of PPDP’99, pages 261–267. Springer-Verlag, September 1999.

17. E. Shapiro. The family of Concurrent Logic Programming Languages. ACM com-
puting surveys, 21(3):412–510, 1989.

18. D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

19. D. H. D. Warren. The Extended Andorra Model with Implicit Control. Presented
at ICLP’90 Workshop on Parallel Logic Programming, Eilat, Israel, June 1990.

Solving Constraints on Sets of Spatial Objects�

Jesús M. Almendros-Jiménez and Antonio Corral

Dpto. de Lenguajes y Computación, Universidad de Almeŕıa
{jalmen,acorral}@ual.es

Abstract. In this paper, we present a constraint solver for constraints
on sets of spatial objects. With this aim, we define a constraint system
for handling spatial data types (points, lines, polygons and regions) and
constraints on them (equalities and inequalities, memberships, metric,
topological and structural constraints), and provide a suitable theory for
this constraint system. The constraint solver is presented in the form of
transformation rules. These transformation rules handle a special kind
of constraints used for consistency checking, enabling an optimized and
efficient solving of spatial constraints.

1 Introduction

In the field of Constraint Programming [2], a wide research has been done in
order to define specialized constraint systems for particular problems. For in-
stance, linear equations and inequations over reals [12] for spatial objects han-
dling, boolean constraints [5] for circuit structure reasoning, linear constraints
on integer intervals [10] for combinatorial discrete problems, and temporal con-
straints [19] for time and scheduling reasoning. For each one of these constraint
systems both generic and particular constraint solver techniques have been stud-
ied in order to improve the searching of solutions. They typically are based on
heuristics, backtracking and branch and bound algorithms. Several techniques like
constraint propagation achieving local, arc and path consistency, among others,
ensure a good performance of constraint solvers.

The framework of constraint databases [11] is based on the simple idea that
a constraint can be seen as an extension of a relational tuple, called generalized
tuple, or, vice versa, that a relational tuple can be interpreted as a conjunction of
equality constraints. Each generalized tuple finitely represents a possibly infinite
set of relational tuples, called extension of the generalized tuple, one for each
solution of the constraint. As far as we know spatial constraint databases have
been focused on linear constraints handling [16, 15, 4] in which spatial reasoning
is based on linear equations and inequations. The basic idea is to see spatial
objects as infinite sets of points and provide a finite representation of these
infinite sets, with constraints over a dense domain. Most known spatial data
types like point, line and region can be modeled with these frameworks, and
distance-based operations can be included on it [3].
� This work has been partially supported by the Spanish project of the Ministry of

Science and Technology, “INDALOG” TIC2002-03968 under FEDER funds.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 158–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving Constraints on Sets of Spatial Objects 159

However, in our opinion, an interesting direction could be the study of other
kinds of constraint systems, specialized for any class of spatial data types, but
suitable for practical applications. In particular, we are interested in modeling
problems on sets of spatial objects, where each spatial object can be a point, line,
polygon, or a region. In addition, the query language could handle metric and
topological queries on these object sets.

In this paper, we present a constraint solver for constraints on sets of spa-
tial objects (points, lines, polygons and regions). With this aim, we will present
a constraint system for handling these spatial data types and constraints on
them (equalities and inequalities, memberships, metric, topological and struc-
tural constraints). We will provide a suitable theory for this constraint system.
The constraint solver will be presented in the form of transformation rules.
These transformation rules handle a special kind of constraints used for consis-
tency checking, enabling an optimized and efficient solving of spatial constraints.
This consistency checking is based on solving of constraints on real intervals.
The basis of the optimization of the constraint solver is the use of the so-called
Minimum Bounded Rectangles (MBR’s) for approximating objects, and sets of
objects organized in data structures called R-trees [8]. An MBR is a rectangle
with faces parallel to the coordinate axis, which approximates the exact geo-
metrical representation of the spatial object in two points. The constraint solver
uses this representation for using branch and bound techniques in order to solve
queries on sets of spatial objects. Our framework is close to the research on
spatial databases focused on sets of spatial objects [7, 17, 6, 18, 14], which is a
widely investigated area. Some attempt to compare this framework with con-
straint programming has been studied in [13] (for topological relations) however
a more general approach is still an open topic of research.

The structure of the paper is as follows. Section 2 presents a set of examples
of constraint satisfaction problems using spatial data. Section 3 formally defines
the set of spatial data types together with the set of operations defined on them.
Section 4 formally defines a spatial constraint satisfaction problem and its solved
form. Section 5 presents the constraint solver and finally, section 6 concludes and
presents future work.

2 Examples of Spatial CSP’s

Basically, we handle sets of spatial objects where a spatial object can be a point,
line, polygon or region. Points will be represented by means of pairs of real and
variable coordinates: (1, 2) and (x, 1); lines by means of an ordered sequence
of points: line[(1, 2), (4, 5), (9, 10)]; and the same can be said for polygons and
regions, where the points define a closed path (i.e. last point is connected to the
first one). Lines, polygons and regions are not intended to contain more vertices.

With this representation we can describe sets of closed points-based geometric
figures : {(8, 1), line[(1, 2), (4, 5), (9, 10)}. On these spatial data types, a set of
binary spatial operations is defined. We can classify them in five groups: equality
and membership relations, set operations, metric operations, topological rela-
tions, and finally, structural operations. We are not interested in a complete set
of operations, but enough for most usual spatial queries.

160 Jesús M. Almendros-Jiménez and Antonio Corral

S1 S2

mindist

pmindist

omindist

disjoint meet

neighbour

inside

outsideoverlap ncovers ncoveredby

cuts

mcovers mcoveredby

Fig. 1. Metric and Topological Operations

With respect to equality relations, spatial objects can be compared, for in-
stance (1, 2) = (2, 3), (1, x) = (1, 9), line[(1, 2), (10, y)] = line[(z, 2), (10, 12)].
The first equality relation is false, but the other two equality relations define
a relation on x, y and z, which can be seen as a constraint, that is, a require-
ment that states which combinations of values from the variable domains are
admitted. In this case, x equal to 9, y equal to 12 and z equal to 1. This can be
expressed, at the same time, as constraints of the form x = 9, y = 12, z = 1.

With respect to the membership relations, we can express membership of
points to a spatial object, for instance (1, 6) ∈ line[(1, 2), (1, 9)], which is
trivially true, but we can also add variables. However, we can also use the
membership relation for expressing that a spatial object belongs to a set of
spatial objects. For instance, A ∈ {line[(1, 2), (1, 9)], (9, 10)}. In this case, A
ranges on two spatial objects, line[(1, 2), (1, 9)] and (9, 10). Combining mem-
bership relations we can build our first CSP using spatial data. For instance,
(1, x) ∈ A, A ∈ {line[(1, 2), (1, 9)], (1, 10)}. The allowed set of values for x is
then [2, 9] and 10. This can be expressed by means of two constraints x ∈ [2, 9]
and x = 10. Usually, in constraint programming, a disjunction can be used for
expressing both cases in a sole constraint: x ∈ [2, 9], A = line[(1, 2), (1, 9)]
∨ x = 10, A = (1, 10). This written form can be seen as a solved form or answer
to the constraint satisfaction problem.

With respect to the set operations, we consider union, intersection, and dif-
ference. We have two cases, for spatial objects and sets of spatial objects. For
instance, (1, 2)∪line[(1, 2), (9, 10)] represents the set of points belonging to both
spatial objects. Therefore, the constraint (1, x) ∈ (1, 2)∪ line[(1, 2), (9, 10)] has
a solved form x = 2. An accurate treatment needs the difference. When the
difference involves two spatial objects, the result of performing such operation
can be a spatial object with holes. For this reason, we allow solved forms in
our framework, including geometric figures like line[(1, 2), (9, 10)]− (1, 2) rep-
resenting a closed points-based geometric figure with holes. These holes are an
arbitrary union of closed points-based geometric figures.

The third kind of operations are the metric ones (see figure 1). They are based
on distances, and also handle spatial objects and sets of spatial objects. We can
suppose a fixed distance d(,) for pairs of points: Euclidean, Manhattan, etc.
The fixed distance is not relevant, and we can suppose any of them. In this case
we have mindist, maxdist, pmindist, pmaxdist, omindist and omaxdist. The
first two represent the minimum and maximum distance between two spatial

Solving Constraints on Sets of Spatial Objects 161

objects. For instance x = mindist(line[(1, 2), (1, 10)], line[(3, 2), (12, 15)]), is
a constraint with solved form x = 3. Distance-based queries have a particularity.
They are rigid operations, that is, objects for which a minimum (maximum)
distance is computed must be a fully defined object, avoiding the use of ranged
variables in their description. For instance, it is forbidden to formulate a con-
straint satisfaction problem of the form x = mindist((1, y), (1, 1)), y ∈ [1, 3].
The operations pmindist and pmaxdist (resp. omindist and omaxdist) get the
set of pairs of points (resp. objects) with the minimum (resp. maximum) dis-
tance. For instance, P ∈ pmindist(line[(1, 2), (1, 10)], line[(3, 2), (12, 15)]),
requires the variable P, a new kind of variable, to be a member of a set of pairs
of spatial objects. This set represents the set of pairs of points which are at the
minimum distance. The solved form will be P ∈ {{< (1, 2), (3, 2) >}}. Therefore,
we have to handle in addition to set of objects, set of pairs of objects, using a
couple of brackets as notation.

With respect to topological relations (see figure 1), they are usual binary
topological relations on spatial objects and set of spatial objects. For instance,
A ∈ {(1, 4), (4, 5)}, B ∈ {line[(1, 4), (1, 10)], (4, 5)}, A inside B has as solved
form A = (1, 4), B = line[(1, 4), (1, 10)] ∨ A = (4, 5), B = (4, 5). Analogously,
the constraint P ∈ {(1, 4), (4, 5)} inside {line[(1, 4), (1, 10)], (4, 5)} has as
solved form P ∈ {{< (1, 4), line[(1, 4), (1, 10)] >, < (4, 5), (4, 5) >}}. A special
case is rangeq, which is a topological operation for range queries, such as the
occurrence of a spatial object or a set of spatial objects that fall on a certain
distance from a point or on a window. With this aim, we consider as special case
of spatial data types, the circle defined by a point and a given radius (circle)
and a window given by two points (window). For instance, A ∈ {(1, 2), (9, 10)}
rangeq circle((0, 0), 3) has as solved form A = (1, 2).

In addition, we have considered a set of structural operations in order to
compute the size of spatial objects, and the set of points and line segments
which conform the frontier of a spatial object (and a set of spatial objects).
They are setpoints, setsegments, area, length and perimeter.

Finally, our constraint system can handle negation, but with restricted use.
Equality and membership relations can be used in negative form �= and /∈,
but variables used in them (which can be referred to distances, coordinates
of points, spatial objects and pairs of spatial objects) must be ranged in at
least one positive constraint in order to formulate a constraint satisfaction prob-
lem. This restricted version of negation prevents anomalies in the use of nega-
tion such as infinite answers for a constraint satisfaction problem. For instance,
C = A ∩ B, A /∈ {(1, 2), (3, 4)}, B /∈ {(1, 2)} cannot be represented in solved form
as a finite disjunction of equality and membership relations for C, A and B. The
problem is that there is a infinite and not finitely representable set of solutions.

Therefore, and in order to ensure that each constraint satisfaction problem
has an equivalent solved form as a disjunction of equality and membership rela-
tions, we require that the constraint satisfaction problem is formulated as follows.
Each variable, representing a distance, coordinates of points, spatial objects or
pair of spatial object, must be ranged in an interval of real numbers, spatial ob-
ject, sets of spatial objects or sets of pairs of spatial objects, respectively. This

162 Jesús M. Almendros-Jiménez and Antonio Corral

(syntactic) condition of range restriction, called safety condition, and required
over the constraint satisfaction problems, is usual in constraint databases [15].

C1

C2

C3

C4

C5

C6

T1

T2

T3

River

Lake

Fig. 2. Spatial Example

Now, we show an example of spatial data
to explain the use of our framework for pro-
cessing spatial queries as Constraint Satis-
faction Problems (CSP’s). In this example,
we have spatial information (non-spatial data
can also be managed (e.g. Name, Popula-
tion, Length, etc.), but we are only inter-
ested in its spatial shape) about Cities (set
of points), Tourist Resorts (set of points),
Roads (set of lines), River (line) and Lake
(polygon). The figure 2 illustrates the spa-
tial data, and assuming the work area in the
window (0, 0) for lower-left corner and (80,
60) for the upper-right corner, the coordinates of the spatial components (ex-
pressed as constraints) are the following: Cities: C1 = (16, 24), C2 = (27, 41),
C3 = (40, 28), C4 = (50, 10), C5 = (60, 32), C6 = (75, 55); Tourist Re-
sorts: T1 = (12, 16), T2 = (23, 37), T3 = (57, 6); Road ∈ {line[C6, C5, C3],
line[C6, C3, C1, T1], line[C5, C4, C1], line[T3, C4, C3, C2, T2]}; River = line[(52,
60), (60, 41), (50, 16), (0, 28)]; and Lake = polygon[(64, 38), (62, 35), (60, 36),
(60, 34), (56, 36), (58, 40), (62, 42)]. Note that the road is expressed as a set of
line segments due to we cannot handle graphs in our representation. The follow-
ing spatial queries (topological, distance-based and directional) are expressed as
a CSP as follows, where capitalized names represent variables:

Query CSP Answer

(1)

List the part
of the river
that passes
through the lake

Parts ∈ setsegments(River)
Through = Parts ∩ Lake

Through = line[(60, 41), (56, 35)]
Parts = line[(60, 41), (50, 16)]

(2)

Report the part
of the road
that touches
the lake and
its length

Parts ∈ setsegments(Road)
Touches = Parts ∩ Lake
Parts neighbor Lake
L = length(Touches), L �= 0

Touches = line[(64, 36), (62, 35)]
Parts = line[C6, C5], L = 3.5

(3)

Report all
the cities that
can use water
from the river
(at most within 10 km)

City ∈ {C1, C2, C3, C4, C5, C6}
D = mindist(City, River)
D ∈ [0, 10]

D = 0, City = C1∨
D = 9, City = C3∨
D = 6, City = C4∨
D = 3, City = C5

(4)
Find tourist
resorts that are
within 7.5 km of a city

Near ∈ {T1, T2, T3} rangeq
circle(City, 7.5)

Near = T2, City = C2

(5)
Which city is
the closest to
any tourist resort?

Closest ∈ pmindist({C1, C2, C3, C4, C5,
C6}, {T1, T2, T3}) Closest ∈ {{< C2, T2 >}}

(6)
List the cities
to the north of C3

(X, Y) = City, C3 = (U, V), Y ∈ [U, 60]
(X, Y) = C2, (U, V) = (40, 28)∨
(X, Y) = C5, (U, V) = (40, 28)∨
(X, Y) = C6, (U, V) = (40, 28)

(7)
Report bridges
which are not in a city

Intersection = Road ∩ River
Intersection /∈ {C1, C2, C3, C4, C5, C6}

Intersection = (59, 43)∨
Intersection = (56, 31)∨
Intersection = (46, 27)

Solving Constraints on Sets of Spatial Objects 163

3 Constraints on Sets of Spatial Objects

Now we formally present our spatial constraint system. Let NVar be a set of
numerical variables x, y, . . ., OVar a set of variables for objects A, B, . . ., PVar a
set of variables for pairs of objects P, Q, . . ., and R the set of real numbers. Now,
we have a data constructor for pairs of coordinates (,) : NType × NType →
Point, where NType = NVar ∪ R, a set of data constructors for spatial data
types: ∅ :→ SDT, line : [Point] → Line, polygon : [Point] → Polygon, and
region : [Point]→ Region where SDT = OVar∪Point∪Line∪Polygon∪Region.
We have also a data constructor for pairs of spatial data types : < , >: SDT×
SDT → PairSDT, and PSDT = PVar ∪ PairSDT. With respect to sets of spatial
objects and pairs of spatial objects, we have a set of data constructors for sets
of (pairs of) spatial objects: ∅ :→ SetSDT, { | } : SDT × SetSDT → SetSDT,
∅ :→ SetPSDT, and {{ | }} : PSDT× SetPSDT→ SetPSDT. Finally, we have data
constructors for a special kind of spatial data types, called Window, Circle such
that window : Point × Point → Window, circle : Point × NType → Circle
and Range = Window ∪ Circle. In addition, Interval builds finite closed real
intervals: [,] : NType× NType→ Interval.

Now we present a set of operations over the defined types. Some operations
are partial, that is, are not defined for some arguments. Assuming the symbol
⊥ representing a special value called undefined, we can consider the following
types. For the type NType, we have the binary operations =, �=: NType×NType→
Boolean, and ∈, /∈: NType × Interval → Boolean. The formal semantics is
as follows. Given a valuation μ of numerical variables into R ∪ {⊥}, then we
denote by μ(n), where n ∈ NType, the value of n under the valuation μ as the
real number (or undefined), defined as μ(n) = μ(x) if n ≡ x is a variable and
μ(n) = n, otherwise. Now, given n1, n2, n3 ∈ NType, and a valuation μ, we
define ⊥ = ⊥,⊥ �= ⊥ are both false; n1 = n2 iff μ(n1) = μ(n2); n1 �= n2 iff
μ(n1) �= μ(n2); n1 ∈ [n2, n3] iff μ(n2) ≤ μ(n1) ≤ μ(n3); and finally, n1 /∈ [n2, n3]
iff μ(n2) > μ(n1) or μ(n1) > μ(n3). ⊥ represents undefined and therefore an
incomparable value. We denote by V al(NType) the set of valuations of numerical
variables into R∪{⊥}. Now, the value of a spatial object O under a valuation μ ∈
V al(NType), denoted by μ(O), is a closed point-based geometric figure (FIG),
and it is defined as follows:

– μ((p1, p2)) =def {(μ(p1), μ(p2))} if none of the μ(pi) are ⊥; and ∅, otherwise.
– μ(line[(p1, p2), (p3, p4), . . . , (pn−1, pn)]) =def {(r, s) | r = α×μ(p2k+1)+(1−

α) × μ(p2k+3), s = α × μ(p2k+2) + (1 − α) × μ(p2k+4), α ∈ [0, 1], 0 ≤ k ≤
n − 4/2, k ∈ N, α ∈ R}, if none of the μ(pi) is ⊥; and ∅, otherwise, where
n ≥ 4, n ∈ N, and each pi ∈ NType. Analogously for polygons and regions.

Spatial objects can be grouped in both sets of objects and sets of pairs of
objects. The operations on sets of (pairs of) spatial objects are interpreted into
closed point-based geometric figures with holes (FH).

Definition 1 (Figures with Holes). Given FIG’s: F , Hi, a figure with holes
G has the form F − ∪k≥i≥1Hi where k ≥ 0, Hi ∩ Hj = ∅ if i �= j and
∪k≥i≥1Hi ⊆ F . The set ∪k≥i≥1Hi is called the holes of G. The set of figures

164 Jesús M. Almendros-Jiménez and Antonio Corral

a polygon without
a point

mindist defined

a polygon without
an edge

a region without
a region

mindist undefined

Fig. 3. Closed Point-Based Geometric Figures with Holes

with holes is denoted by FH. We denote by (i) Ḡ the figure obtained from G,
adding the topological frontier; (ii) mindist(G,G′) (resp. maxdist(G,G′)) de-
notes the minimum (resp. maximum) distance from G to G′, defined as fol-
lows: mindist(G,G′) =def ⊥ if min{d((p, q), (r, s)) | (p, q) ∈ G, (r, s) ∈ G′} <
min{d((p, q), (r, s)) | (p, q) ∈ Ḡ, (r, s) ∈ Ḡ′} and otherwise mindist(G,G′) =def

min{d((p, q), (r, s)) | (p, q) ∈ G, (r, s) ∈ G′} and analogously for maxdist; (iii)
L(G) denotes the length of a line G; (iv) P(G) denotes the perimeter of a polygon
or region G; (v) A(G) denotes the area of a region G. The three are defined as
⊥ whenever the figure has a hole. (vi) PS(G) (resp. LS(G)) denotes the set of
points (resp. line segments of the frontier) which define G.

An element of FH can have holes, which are in the topological frontier of the
object (see figure 3). When the distance (minimum or maximum) from an ele-
ment of FH to another element of FH is computed, it could be that the nearest
points are in the holes. In this case, we consider both distances are undefined
(see figure 3). The elements of FH can be grouped into sets, denoted by SFH,
and sets of pairs of elements of FH, denoted by SPFH. Grouping FH into sets
we can handle more complex spatial objects like graphs, among others. Sets of
(pairs of) spatial objects can have variables representing spatial objects. Given
a valuation Δ of variables of spatial objects into FH then: Δ(μ({O1, . . . , On}))
=def {Δ(μ(O1)), . . . , Δ(μ(On))}, and Δ(μ({{< O1, O2 >, . . . , < On−1, On >
}})) =def {(Δ(μ(O1)), Δ(μ(O2))), . . . , (Δ(μ(On−1)), Δ(μ(On)))} where each
Oi ∈ SDT. We can also consider valuations of variables representing pairs of spa-
tial objects into pairs of FH’s. We denote by V al(SDT) the set of valuations into
FH’s and V al(PSDT) the set of valuations into pairs of FH’s.

With respect to set theory operations, we have the set: ∪,∩,− : SDT×SDT→
SetSDT, SetSDT ×SetSDT → SetSDT, the semantics is the usual on set theory,
that is, given valuations μ ∈ V al(NType), Δ ∈ V al (SDT), and Ω ∈ V al(PSDT);
Oi ∈ SDT and Si ∈ SetSDT; the set operations are defined as [|O1ΘO2|](μ,Δ,Ω) =
[|O1|](μ,Δ,Ω)Θ[|O2|](μ,Δ,Ω) and [|S1Θ S2|](μ,Δ,Ω) = [|S1|](μ,Δ,Ω)Θ [|S2|](μ,Δ,Ω), where
Θ ∈ {∪,∩,−}.

With respect to equality and membership operations we have the following
set: =, �=: SDT × SDT → Boolean, PSDT× PSDT → Boolean, and ∈, /∈: Point ×
SDT → Boolean, SDT × SetSDT → Boolean, PSDT × SetPSDT → Boolean. The
above operations are interpreted in terms of the set of points that the (set of)
spatial objects define. For instance, [|O1 = O2|](μ,Δ,Ω) =def true if Δμ(O1) =
Δμ(O2) and [|(p1, p2) ∈ O|](μ,Δ,Ω) =def true if μ((p1, p2)) ∈ Δμ(O). Similarly
with the other equality and membership operations.

Solving Constraints on Sets of Spatial Objects 165

With respect to metric operations, we have the following set: mindist, max-
dist : SDT × SDT → R, SetSDT × SetSDT → R, pmindist, pmaxdist : SDT ×
SDT → PSDT, SetSDT × SetSDT → PSDT, and omindist, omaxdist : SetSDT ×
SetSDT → PSDT. Operations mindist (resp. maxdist) are undefined whenever
the minimum (resp. maximum) distance of the FH’s they represent is undefined.
For instance, [|mindist(O1, O2)|](μ,Δ,Ω) =def min{d((p1, p2), (q1, q2)) | (p1, p2) ∈
[|O1|](μ,Δ,Ω), (q1, q2) ∈ [|O2|](μ,Δ,Ω)} if mindist([|O1|](μ,Δ,Ω), [|O2|](μ,Δ,Ω)) �= ⊥,
and ⊥, otherwise; and [|mindist(S1, S2)|](μ,Δ,Ω) =def min{mindist(G1,G2) | G1 ∈
[|S1|](μ,Δ,Ω), G2 ∈ [|S2|](μ,Δ,Ω), mindist(G1,G2) �= ⊥}, where Oi ∈ SDT and Si ∈
SetSDT. Similarly with the other metric operations.

With respect to the topological ones, we have the following set: inside,
outside, overlap, disjoint, meet, cuts, neighbor, mcovers, ncovers, mcover-
edby, ncoveredby : SDT × SDT → Boolean, SetSDT× SetSDT → SetPSDT, and
rangeq : SetSDT× Range → SetSDT. For instance, [|O1 inside O2|](μ,Δ,Ω) =def

true if [|O1|](μ,Δ,Ω) ⊆ [|O2|](μ,Δ,Ω); and [|S1 inside S2|](μ,Δ,Ω) =def {(G1,G2) | G1 ∈
[|S1|](μ,Δ,Ω), G2 ∈ [|S2|](μ,Δ,Ω) and G1 ⊆ G2}, where Oi ∈ SDT and Si ∈ SetSDT.
Similarly with the other topological operations.

Finally, we have structural operations: area : Region→ R, length : Line→
R, perimeter : Polygon∪ Region→ R, area, length, perimeter : SetSDT→ R,
and setpoints, setsegments : SDT→ SetSDT, SetSDT→ SetSDT. For instance,
[|area(S)|](μ,Δ,Ω) =def

∑
G∈[|S|](μ,Δ,Ω),G is a regionA(G). Similarly with the other

structural operations. A complete version of the semantics of the operations can
be found in [1].

4 Spatial Constraint Satisfaction Problem

In this section we define what is a spatial constraint satisfaction problem, by
presenting its general form, a special class which represents the solved forms,
and a set of conditions in order to ensure that each spatial constraint satisfaction
problem is equivalent to a solved form.

Definition 2 (Spatial CSP).
A spatial constraint satisfaction problem (SCSP) Γ is a conjunction of typed
boolean operations over the types NType, SDT, PSDT, SetSDT, SetPSDT, Range
and Interval of the form Γ ≡ ϕ1, . . . , ϕn.

Definition 3 (Solution). A triple (μ, Δ, Ω), where μ ∈ V al(NType), Δ ∈
V al(SDT) and Ω ∈ V al(PSDT) is a solution of a SCSP Γ ≡ ϕ1, . . . , ϕn if each
[|ϕi|](μ,Δ,Ω) is equal to true. A SCSP is called satisfiable whenever has at least
a solution.

Definition 4 (Solved SCSP). A solved SCSP Π is a disjunction of spatial
constraint satisfaction problems of the form Π ≡

∨
i≥1 Γi where each Γi is of the

form: Γi ≡ ϕ1, . . . , ϕn, and each ϕj is a solved constraint of the form:

1. x = n where x ∈ NVar and n ∈ R ∪Dom(Γi)
2. x ∈ [n1, n2] − ∪k≥j≥1[hj , hj+1] where x ∈ NVar, n1, n2, hj , hj+1 ∈ R ∪

Dom(Γi) and k ≥ 0; in addition, Γi(n1) ≤ Γi(hj) ≤ Γi(hj+1) ≤ Γi(n2), for
all k ≥ j ≥ 1, and [Γi(hj), Γi(hj+1)] ∩ [Γi(hl), Γi(hl+1)] = ∅ if j �= l.

166 Jesús M. Almendros-Jiménez and Antonio Corral

3. (x, y) ∈ O, where x, y ∈ NVar and O ∈ FH ∪Dom(Γi)
4. A = O −∪k≥j≥1Hj where A ∈ OVar, O, Hj ∈ FH ∪Dom(Γi) and k ≥ 0; in

addition, ∪k≥j≥1Γi(Hj) ⊆ Γi(O), and Γi(Hj) ∩Γi(Hl) = ∅ if j �= l.
5. A ∈ S where A ∈ OVar and Γi(S) ∈ SFH.
6. P = Q where P ∈ PVar, where Q ∈ Dom(Γi) or Q ≡< Q1, Q2 >, Q1, Q2 ∈
FH ∪Dom(Γi)

7. P ∈ SP where P ∈ PVar and Γi(SP) ∈ SPFH.

where there exists at most one solved constraint for each variable x, A and P
in each Γi. Variables x, A and P in the definition represent the domain of
Γi, denoted by Dom(Γi). Γi(x) (resp. Γi(A), Γi(P)) denote the set of solutions
represented by the solved constraints in which occurs x (resp. A and P), and
Γi(S), Γi(SP) the set of SFH’s, respectively SPFH’s obtained from them.

Definition 5 (Solutions of a Solved SCSP).
A solved SCSP Π ≡

∨
i≥1 Γi defines a set of solutions, denoted by Sol(Π), and

defined as Sol(Π) = ∪ΓiSol(Γi), where each Γi defines a set of solutions which
consists on triples (μ, Δ, Ω), recursively defined as follows:

�
μ =def ∪x=n∈Γi{x/μ(n)}

∪(x∈[n1,n2]−∪k≥j≥1[hj ,hj+1])∈Γi,r∈[μ(n1),μ(n2)],r /∈∪k≥j≥1[μ(hj),μ(hj+1)]{x/r}
∪((x,y)∈O)∈Γi,(p,q)∈Δμ(O){x/p, y/q}

�
Δ =def ∪(A=O−∪k≥j≥1Hj)∈Γi

{A/Δμ(O) − ∪k≥j≥1Δμ(Hj)}
∪(A∈S)∈Γi,G∈Δμ(S){A/G}

� Ω =def ∪P=Q∈Γi{P/ΩΔμ(Q)} ∪(P∈SP)∈Γi,(G1,G2)∈ΩΔμ(SP) {P/(G1,G2)}
Finally, Γi(x) =def μ(x), Γi(A) =def Δ(A) and Γi(P) =def Ω(P), Γi(n) =def n
if n ∈ R, Γi(O) =def O if O ∈ FH, Γi(P) =def P if P = (G1,G2) and G1,G2 ∈
FH for each Γi.

In order to ensure that any spatial constraint satisfaction problem is equiva-
lent to a solved SCSP we have to require that the SCSP follows some syntactic
conditions. We call safe SCSP to SCSP ensuring these conditions.

Definition 6 (Range Restricted Variables). We say that a variable α ∈
NVar ∪ OVar ∪ PVar occurring on a SCSP Γ is range restricted if there exist (i)
an equality constraint α = E or (ii) membership constraint α ∈ E, such that E
is ground (without variables) or all the variables of E are range restricted.

We call that a variable is strongly range restricted considering only the case
(i) in the above definition. Finally, we require that distance-based and structural
operations are rigid.

Definition 7 (Rigid Constraints). A spatial constraint is rigid if whenever
an operation involving Θ ∈ {mindist, maxdist, pmindist, pmaxdist, omindist,
omaxdist, area, length, perimeter} is included in the form Θ(O1, O2) (or
Θ(O)) (resp. Θ(S1, S2) (or Θ(S))) then O1 and O2 (or O) (resp. S1 and S2

(or S)) only contain strongly range restricted variables.

Definition 8 (Safe SCSP). A safe SCSP is a SCSP where all the variables
are range restricted, and all the spatial constraints are rigid.

Theorem 1. Each satisfiable safe SCSP is equivalent to a solved SCSP.

Solving Constraints on Sets of Spatial Objects 167

5 Constraint Solver

In this section we present the basis of the constraint solver. With this aim we pro-
pose a set of transformation rules for obtaining a solved CSP from every SCSP.

X

Y

M3

M4

*p2M1

* p4

* p3

p1

*

p6

*

* p7

*p5

M5

M6
* p9

p8

*

*p11 * p10

* p12

M7

M2

(0, 0)

Fig. 4. MBRs and R-trees

5.1 MBRs and R-Trees

The basis of the efficiency of our constraint solver is the use of Minimum Bounded
Rectangles (MBR’s) to enclose objects and set of objects. In the case of set of
objects the MBR’s are organized in data structures called R-trees. These spatial
access methods are a similar structure to the well-known data structures B-trees
used for file indexing. In the case of R-trees, each object is enclosed in its MBR
and stored in the leaves. Each internal node of the tree stores the set of MBR’s
enclosing its children and has as searching key the MBR covering the children.

This structure allows optimizations in the form of branch and bound algo-
rithms which takes into account the coordinates of the MBR’s (upper-left corner
and lower-right corner of the MBR). As an example of this data structure, the
figure 4 shows how to store in an R-tree the points p1, . . . , p12 in which the MBR
M1 encloses the points p1, . . . , p4 and M2 the rest of points. At the same time M1
is subdivided into M3 and M4, and so on. It gives us the R-tree described in the
right chart of the figure. For more details about R-trees see [8].

We adopt the cited structure but adapting MBR’s and R-trees to the context
of constrained objects in the following sense. Each spatial object is enclosed into
an MBR but the MBR is also constrained given that the spatial object can be
described by means of constrained coordinates. That is, a spatial object can be
line[(x, 8), (10, 12)], and x can be constrained to belong to an interval (note that
due to safe condition, each coordinate must be constrained by an equality or a
membership to an interval). It forces to consider constrained MBRs which have
the upper-left corner and lower-right corner also constrained. For instance in the
case line[(x, 8), (10, 12)], and supposing x ∈ [7, 22] it is enclosed by two MBRs
with corners (x, 12) and (10, 8) if x ∈ [7, 10], and (10, 12) and (x, 8) whenever
x ∈ [10, 22] following the criteria for building MBRs. Now, the building of the
R-tree enclosing both MBRs follows the usual criteria.

168 Jesús M. Almendros-Jiménez and Antonio Corral

5.2 Transformation Rules

Our constraint solver will be described by means of a set of transformation rules
of the form Π

∨
CH$Γ ↪→ Π

∨
CH ′$Γ ′. Given a SCSP Γ is intended to apply

these rules on CH $ Γ\CH . The set CH is a conjunction of simple constraints,
called consistence constraints, which should be checked for consistency in each
step of the transformation process. Initially, each CH contains the set of con-
straints on NType of Γ . The transformation process may generate disjunctions
of constraints whenever there are several alternatives. The process ends when no
more rules can be applied (i.e. the constraint system only contains constraints
on candidate objects). In order to obtain a solved SCSP we have to add a re-
finement step which consists on apply the operations defined on the candidate
objects. The performance of our constraint solver should be tested in the presence
of a massive quantity of constraints.

5.3 Consistence Constraints

The basis of the optimization of our constraint solver is the consistence checking
of a conjunction of simple constraints. The consistence constraints have the
following form:

– n1 = n2, n1 �= n2, (p1, p2) = (p′1, p
′
2), (p1, p2) �= (p′1, p

′
2), n1 ∈ [n2, n3], n1 /∈

[n2, n3], which are constraints on NType;
– (p1, p2) ∈ R and (p1, p2) /∈ R where p1, p2 ∈ NType, and R is an MBR;

which are also equivalent to real interval constraints once (p1, p2) ∈ R is
equivalent to p1 ∈ [R.up.x, R.low.x] ∧ p2 ∈ [R.up.y, R.low.y], and analogously
for (p1, p2) /∈ R; where the suffixes up and low denote the upper-left corner
and lower-right corner of the MBR R, respectively, and the suffixes x and y
denote the coordinates of such corners in the axis X and Y , respectively;

– mbrbound(S, R) where S is from SetSDT, and R is an MBR; and distbound(PS,
n1, n2) where n1 and n2 are from NType and PS is from SetPSDT. The first
one requires the elements of the set S to be included in R; and the second
one requires the distance for each pair of objects of PS is bounded in [n1, n2].

Assuming a constraint solver (enabled for consistency checking) for real in-
terval constraints, we should provide a consistence checker for the two last kind
of constraints. It should follows the next rules of constraint propagation:

(P1) Π
∨

mbrbound(S, R1) ∧ mbrbound(S, R2) � Γ ↪→
Π

∨
mbrbound(S, R3) ∧ R3 = intermbr(R1, R2) � Γ

(P2) Π
∨

distbound(PS, n1, n2) ∧ distbound(PS, n3, n4) � Γ ↪→
Π

∨
distbound(PS, n5, n6) ∧ n5 = max(n1, n3) ∧ n6 = min(n2, n4) � Γ

where intermbr(R1, R2) denotes the intersection of two MBRs which is trivially
an MBR, and max(n1, n2) (resp. min(n3, n4)) denotes the maximum (respectively
the minimum) of two real numbers. In addition, the constraint solver should be
able to propagate membership constraints to these special constraints in order
to ensure consistence, and it should follow the next rules:

Solving Constraints on Sets of Spatial Objects 169

(P3) Π
∨

mbrbound(S, R) � O ∈ S ∧ Γ ↪→ Π
∨

mbrbound(S, R) ∧ O ∈ R � O ∈ S ∧ Γ

(P4) Π
∨

distbound(PS, n1, n2)� < O1, O2 >∈ PS ∧ Γ ↪→
Π

∨
distbound(PS, n1, n2) ∧ mindmbr(O1.mbr, O2.mbr) = n3∧

n3 ∈ [n1, n2] ∧ maxdmbr(O1.mbr, O2.mbr) = n4 ∧ n4 ∈ [n1, n2]� < O1, O2 >∈ PS ∧ Γ

where mindmbr(R1, R2) (resp. maxdmbr(R1, R2)) denotes the minimum (resp. max-
imum) distance of two MBR’s, and the suffix O.mbr denotes the MBR enclosing
the object O. In summary, the consistence checker of these simple constraints
should always check interval constraints. The failure rule for the consistence
checker is as follows:

(FAILURE) Π
∨

CH � Γ ↪→ Π if CH is inconsistent

5.4 Transformation Rules

In this subsection we will review the transformation rules, showing the main
cases. First of all, we will summarize the notation used in the rules:

– For objects, we use the suffixes mbr, up and low with the meaning of the
previous section, and using the suffix obj to refer to the object itself.

– For sets of objects, the suffix root denotes the root of the R-tree storing the
set of objects, and we use indices i1, . . . , in for denoting the child of index
ij in a internal node of an R-tree.

– For set of pairs of objects, the suffixes first and second refer to the set of
objects in the first (resp. second) component of each pair.

– For MBRs, we use functions unionmbr, intermbr and diffmbr for computing
the same operations on MBRs.

– We introduce a new kind of constraints for each operation obtaining a set of
pairs of objects, of the form: mindtree(m, PS, R1, R2), maxdtree(m, PS, R1, R2),
insidetree(PS, R1, R2), . . . , etc, where PS is from SetPSDT, and R1 and R2
are MBRs. The meaning of the new kind of constraints is a bound (in the
form of MBRs) for the search space for each pair of PS.

– Finally, we introduce a new kind of constraints for each operation obtaining a
set of objects, of the form: rangetree(S, R, Win) and rangetree(S, R, Circle),
and so on, where R is an MBR, S is from SetSDT. The meaning of such con-
straints is a bound in the form of an MBR for the search space of S.

The transformation rules are shown in tables 1, 2 and 3. Due to the limit
of space we have included the main cases of the tranformation rules, the full
version can be found in [1]. With respect to the transformation rules of equality
constraints (table 1), they use the suffixes up and low to refer to the corners
of the MBRs enclosing the object. As an example, the rule (E1) introduces
consistence constraints for comparing the two MBRs of the compared objects.
In addition, it uses the suffix obj to refer to the object itself (in this case the
compared objects are trivially candidates).

With respect to the membership constraints (table 1), basically they in-
troduce consistence constraints for handling the MBRs (resp. R-trees) enclosing
an object (resp. a set of objects) (rule (M1) (resp. (M2) to (M4))). The most
interesting rules of this block are the rules from (M2) to (M4). They handle

170 Jesús M. Almendros-Jiménez and Antonio Corral

Table 1. Equality and Membership Transformation Rules

(E1) Π
∨

CH � (O1 = O2 ∧ Γ) ↪→ Π
∨

(O1.up = O2.up ∧ O1.low = O2.low ∧ CH)

�(O1.obj = O2.obj ∧ Γ)

(M1) Π
∨

CH � ((p1, p2) ∈ O ∧ Γ) ↪→ Π
∨

((p1, p2) ∈ O.mbr ∧ CH) � ((p1, p2) ∈ O.obj ∧ Γ)

(M2) Π
∨

CH � (O ∈ S ∧ Γ) ↪→ Π
∨

CH � (O ∈ S.root ∧ Γ)

(M3) Π
∨

CH � (O ∈ R ∧ Γ) ↪→ Π
∨

j=s1,...,sk
((O.up ∈ R ∧ O.low ∈ R ∧ CH) � (O ∈ R.j ∧ Γ))

if R has subtrees s1, . . . , sk

(M4) Π
∨

CH � (O ∈ R ∧ Γ) ↪→ Π
∨

(O.up ∈ R ∧ O.low ∈ R ∧ CH) � (O.obj ∈ R.obj ∧ Γ)

if R is a leaf

the R-tree enclosing a set of objects. For instance, the rule (M2) starts the
search in the tree root, and the rule (M3) discards the children which do not
contain the MBR enclosing the searched object. It should be checked by means
of the (FAILURE) rule. Finally, rule (M4) adds constraints for the candidate
objects. As an example, we can consider w.r.t the figure 4:

∅ � p5 ∈ {p1, . . . , p12} ↪→ ∅ � p5 ∈ {p1, . . . , p12}.root ↪→
p5 ∈ {p1, . . . , p12}.root.up ∧ p5 ∈ {p1, . . . , p12}.root.low � p5 ∈ {p1, . . . , p12}.root.M1

∨
p5 ∈ {p1, . . . , p12}.root.up ∧ p5 ∈ {p1, . . . , p12}.root.low � p5 ∈ {p1, . . . , p12}.root.M2 ↪→ . . .
∅ � p5 ∈ {p1, . . . , p12}.root.M2.M5 ↪→ . . .

With respect to the transformation rules for set constraints (table 2), they
use the cited operations for MBRs (as an example see rules (SE1) and (SE2)).

With respect to metric constraints (table 2), they add consistence con-
straints of the form m ∈ [a, b] and distbound(PS, a, b), for each minimum and
maximum distance to be computed. m is a variable used for computing the min-
imum (resp. maximum) distance of two objects (or set of objects) and PS is a
variable for storing pairs of objects at the minimum (resp. maximum) distance.
In the refinement step the bounds a and b should be updated for candidate ob-
jects. These constraints represent the lower and upper bounds of the distance of
two objects and sets of pairs of points or objects, respectively. In such a way,
they are used for the pruning of the search for the minimum distance (and pairs
of points or objects at the minimum distance). Similarly for maximum distances.
In addition, the use of the new kind of constraints mindtree, pmindtree, etc,
allows the handling of each R-tree, and enables the decomposition of an MBR
into its children. For instance, rules (ME1) and (ME2) compute these bounds
for a couple of objects, and the rule (ME3) starts the search in the tree root,
and the rules from (ME4) to (ME6) update the lower bounds, for the case
of minimum distance of two sets of objects. Finally, (ME5) obtains the candi-
date objects. The rules for pairs of points and objects at the minimum distance
are similar. The case of maximum distance is also similar, updating the upper
bound.

With respect to the topological constraints (table 3), we will show the
case of inside, and the rest of cases are similar. The technique for solving such
constraints is based on the use of the consistence constraint mbrbound(S, R),
which keeps the bound in the form of an MBR for the elements of S. In this

Solving Constraints on Sets of Spatial Objects 171

Table 2. Set and Metric Transformation Rules

(SE1) Π
∨

CH � Γ [O1 ∪ O2] ↪→ Π
∨

mbrbound(S, unionmbr(O1.mbr, O2.mbr)) ∧ CH � Γ [S] ∧
S = O1.obj ∪ O2.obj

(SE2) Π
∨

CH � Γ [S1 ∪ S2] ↪→ Π
∨

mbrbound(S, unionmbr(S1.root, S2.root)) ∧ CH � Γ [S] ∧
S = S1.root ∪ S2.root

(ME1) Π
∨

CH � Γ [mindist(O1, O2)] ↪→
Π

∨
m ∈ [mindmbr(O1.mbr, O2.mbr), maxdmbr(O1.mbr, O2.mbr)]∧

CH � Γ [m] ∧ m = mindist(O1.obj, O2.obj)

(ME2) Π
∨

CH � Γ [pmindist(O1, O2)] ↪→
Π

∨
distbound(PS, mindmbr(O1.mbr, O2.mbr), maxdmbr(O1.mbr, O2.mbr))∧

CH � Γ [PS] ∧ PS = pmindist(O1.obj, O2.obj)

(ME3) Π
∨

CH � Γ [mindist(S1, S2)] ↪→
Π

∨
m ∈ [mindmbr(S1.root, S2.root), maxdmbr(S1.root, S2.root)]∧

CH � (Γ [m] ∧ mindtree(m, PS, S1.root, S2.root))

(ME4) Π
∨

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
∨

m ∈ [mindmbr(R1, R2), b]

∧CH � ∧j=i1,...,in,k=l1,...,lt mindtree(m, PS, R1.j, R2.k) ∧ Γ
if R1 has subtrees ij and R2 has subtrees lk and a >= mindmbr(R1, R2)

(ME5) Π
∨

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
∨

m ∈ [mindmbr(R1, R2), b]

∧CH � m = mindist(PS) ∧ PS = {{< R1.obj, R2.obj >}} ∪ PS1 ∧ Γ [PS/PS1]
if R1 and R2 are leaves and a >= mindmbr(R1, R2) and PS occurs in Γ

(ME6) Π
∨

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
∨

m ∈ [a, b] ∧ CH � Γ

if a < mindmbr(R1, R2)

case, a new constraint insidetree allows the handling of the R-tree (rules (T1)
to (T5)). Finally, the structural constraints (table 3) take into account the
lower and upper bounds of area, length and perimeter operations of an object
and a set of objects, using also MBRs and R-trees (as an example see rule (S1)).

5.5 Refinement Step

The refinement step consists of the solving of the constraints over candidate
objects of Γ . For solving these constraints now we should take into account the
candidate objects (i.e. figures with holes) stored in each MBR computed with the
transformation rules. This solving together the solving of the interval constraints
of CH represent the solved CSP of the original one.

5.6 Soundness and Completeness

With regard to soundness and completeness we would like to reason about a
crucial point in any set of transformation rules: the progress in the transforma-
tion. With respect to this point, the transformation rules are defined in such
a way that each constraint, occurring in Γ , is handled by at least one rule, it
ensures local progress, once the applicability conditions are only refereed to the
structure of the constraint. In addition, the metric transformation rules have
as applicability conditions, conditions of the form a < mindmbr(R1, R2), etc. Al-
though R1, R2 can be defined by means of coordinates which can be variables,

172 Jesús M. Almendros-Jiménez and Antonio Corral

Table 3. Topological and Structural Transformation Rules

(T1) Π
∨

CH � Γ [O1 inside O2] ↪→
Π

∨
O1.up ∈ O2.mbr ∧ O1.low ∈ O2.mbr ∧ CH � Γ [O1.obj inside O2.obj]

(T2) Π
∨

CH � Γ [S1 inside S2] ↪→ Π
∨

(mbrbound(PS.first, S1.root)∧
mbrbound(PS.second, S2.root) ∧ CH) � (Γ [PS] ∧ insidetree(PS, S1.root, S2.root))

(T3) Π
∨

mbrbound(PS.first, R1) ∧ mbrbound(PS.second,R2) ∧ CH � insidetree(PS, R1, R2)

∧Γ ↪→ Π
∨

∧j=i1,...,in,k=l1,...,lt mrbbound(PS.first, R1.j) ∧ mbrbound(PS.second, R2.k)

∧CH � ∧j=i1,...,in,k=l1,...,lt insidetree(PS, R1.j, R2.k) ∧ Γ)
if R1 has subtrees i1, . . . , in and R2 has subtrees l1, . . . , lt, and R1, R2 intersect

(T4) Π
∨

CH � insidetree(PS, R1, R2) ∧ Γ ↪→
Π

∨
CH � PS = R1.obj inside R2.obj ∪ PS1 ∧ Γ [PS/PS1]

if R1 and R2 are leaves and R1, R2 intersect

(T5) Π
∨

CH � insidetree(PS, R1, R2) ∧ Γ ↪→ Π
∨

CH � Γ

if R1, R2 do not intersect and PS occurs in Γ

(S1) Π
∨

CH � Γ [area(O)] ↪→
Π

∨
m ∈ [0, (O.up.x − O.low.x) ∗ (O.up.y − O.low.y)] ∧ CH � Γ [m] ∧ m = area(O.obj)

however the safety condition ensures that R1 and R2 are fully defined given that
metric operations are rigid. A proof of soundness and completeness has been
omitted due to the lack of space.

6 Conclusions and Future Work

In this paper we have developed the basis for a constraint solver based on branch
and bound techniques for efficiently solve metric and topological queries on sets
of spatial objects. As future work we plan to implement a program library for
the handling of R-trees and constraints. In addition, we would like to study how
to integrate into the well-known framework of Constraint Logic Programming
(CLP) [9].

References

1. J. M. Almendros-Jiménez and Antonio Corral. Solving constraints on sets of spatial
objects, available in http://www.ual.es/~jalmen/padl05tr.ps. Technical report,
Dpto. de Lenguajes y Computación, Universidad de Almeŕıa, 2004.

2. K. R. Apt. Principles of Constraint Programming. Cambridge U. Press, 2003.

3. A. Belussi, E. Bertino, and B. Catania. Manipulating Spatial Data in Constraint
Databases. In SSD’97, LNCS 1262, pages 115–141. Springer, 1997.

4. A. Belussi, E. Bertino, and B. Catania. An Extended Algebra for Constraint
Databases. TKDE, 10(5):686–705, 1998.

5. P. Codognet and D. Dı́az. A Simple and Efficient Boolean Solver for Constraint
Logic Programming. Journal of Automated Reasoning, 17(1):97–129, 1996.

6. A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest Pair
Queries in Spatial Databases. In ACM SIGMOD, pages 189–200, 2000.

Solving Constraints on Sets of Spatial Objects 173

7. R. H. Güting. An Introduction to Spatial Database Systems. VLDB, 3(4):357–399,
1994.

8. A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In ACM
SIGMOD, pages 47–57, 1984.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. JLP,
19,20:503–582, 1994.

10. J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond Finite Domains.
In CP’94, pages 86–94, 1994.

11. G. M. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer,
2000.

12. K. Marriot and P. J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

13. D. Papadias, P. Kalnis, and N. Mamoulis. Hierarchical Constraint Satisfaction in
Spatial Databases. In AAAI/IAAI’99, pages 142–147, 1999.

14. D. Papadias, Y. Theodoridis, T. K. Sellis, and M. J. Egenhofer. Topological Re-
lations in the World of Minimum Bounding Rectangles: A Study with R-trees. In
ACM SIGMOD, pages 92–103, 1995.

15. P. Z. Revesz. Safe Query Languages for Constraint Databases. ACM TODS,
23(1):58–99, 1998.

16. P. Rigaux, M. Scholl, L. Segoufin, and S. Grumbach. Building a Constraint-based
Spatial Database System: Model, Languages, and Implementation. Information
Systems, 28(6):563–595, 2003.

17. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases: with application to GIS.
Morgan Kaufmann Publishers, 2001.

18. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. In ACM
SIGMOD, pages 71–79, 1995.

19. E. Schwalb and L. Vila. Temporal Constraints: A Survey. Constraints, 3(2/3):129–
149, 1998.

Discovery of Minimal Unsatisfiable Subsets
of Constraints Using Hitting Set Dualization

James Bailey and Peter J. Stuckey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne 3010, Australia

Abstract. An unsatisfiable set of constraints is minimal if all its (strict)
subsets are satisfiable. The task of type error diagnosis requires finding all
minimal unsatisfiable subsets of a given set of constraints (representing
an error), in order to generate the best explanation of the error. Similarly
circuit error diagnosis requires finding all minimal unsatisfiable subsets
in order to make minimal diagnoses. In this paper we present a new
approach for efficiently determining all minimal unsatisfiable sets for any
kind of constraints. Our approach makes use of the duality that exists
between minimal unsatisfiable constraint sets and maximal satisfiable
constraint sets. We show how to incrementally compute both these sets,
using the fact that the complements of the maximal satisfiable constraint
sets are the hitting sets of the minimal unsatisfiable constraint sets. We
experimentally compare our technique to the best known method on a
number of large type problems and show that considerable improvements
in running time are obtained.

Keywords: Minimal unsatisfiable sets, constraint solving, hitting sets,
hypergraph transversals.

1 Introduction

A set of constraints is unsatisfiable if it has no solution. An unsatisfiable set of
constraints is minimal if all its (strict) subsets are satisfiable. A number of forms
of error diagnosis, in particular type error diagnosis, require finding all minimal
unsatisfiable subsets of a given set of constraints (representing an error), in order
to generate the best explanation of the error.

There is a significant amount of work that deals with minimal unsatisfiable
sets, particularly in the areas of explanation and intelligent backtracking (e.g. [4])
or nogood creation (e.g. [16]). However, the vast bulk of this work is only in-
terested in finding a single minimal unsatisfiable set. This is usually achieved
by relying on some kind of justification recording, and then postprocessing the
recorded unsatisfiable set to eliminate unnecessary constraints. In many cases a
non-minimal unsatisfiable set is used.

Our motivation for examining the problem of finding all minimal unsatisfiable
subsets of a set of constraints arises from type error debugging. In Hindley-Milner
type inference and checking, a program is mapped to a system of Herbrand

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 174–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Discovery of Minimal Unsatisfiable Subsets of Constraints 175

constraints and a type error results when this system of Herbrand constraints is
unsatisfiable. An explanation of the type error is given by a minimal unsatisfiable
subset of the system of Herbrand constraints

Example 1. Consider the following fragment of Haskell code

f [] y = []
f (x:xs) y = if (x < y) then (f xs y) else xs
g xs y = ’z’ > (f xs y)

that defines a function f which returns a list, and then erroneously compares
the result of that function to character ’z’. The Chameleon type debugging
system [17, 11] finds a single minimal unsatisfiable set of constraints that causes
the type error and underlines the associated the program fragments. If that
minimal unsatisfiable set included the constraints posed by the base case in the
definition of function f, the Chameleon system would show the following

f [] y = []

f (x:xs) y = if (x < y) (f xs y) else xs

g xs y = ’z’ > (f xs y)

while if the minimal unsatisfiable set included the constraints posed by the re-
cursive case in the definition of function f, the Chameleon system would instead
show the following

f [] y = []

f (x : xs) y = if (x < y) (f xs y) else xs

g xs y = ’z’ > (f xs y)

One explanation may be easier to understand than another, for example if it
involves fewer constraints. Hence, deriving all minimal unsatisfiable sets allows
us to choose the “simplest” explanation.

Finding all minimal unsatisfiable sets of a system of constraints is a challeng-
ing problem because, if it is done naively, it involves examining every possible
subset. Indeed in the worst case there may be an exponential number of answers.
Most previous work has concentrated on its use in diagnosis of circuit errors. The
best method we know of is given by Garćıa de la Banda et al [5], who presented
a series of techniques that significantly improved on earlier approaches of [13]
and [12].

This paper presents a completely new method for calculation of all minimal
unsatisfiable constraint sets. We show that this problem is closely related to a
problem from the area of data mining, concerned with enumerating interest-
ing sets of frequent patterns. In particular, we show how an algorithm known
as Dualize and Advance [10], which has previously been proposed for discover-
ing collections of maximal frequent patterns in data mining, can be efficiently
adapted to the constraint context, to jointly enumerate both all minimal unsat-
isfiable sets and all maximal satisfiable sets of constraints.

176 James Bailey and Peter J. Stuckey

Interestingly, Dualize and Advance, although having good worst case com-
plexity, does not seem to be a practical algorithm for finding maximal frequent
patterns in data mining [19, 8], due to the large number of patterns required to
be output. However, in the constraint context, the size of the output (i.e. the
number of minimal unsatisfiable sets of constraints and the number of maxi-
mal satisfiable sets of constraints) is typically far smaller and we demonstrate
its efficiency. Furthermore, we show how improvements in the procedure can be
made by incorporation of information from the constraint graph. We experimen-
tally compare our method with the best known available technique from [5] on
a number of debugging problems containing hundreds of constraints and show
that our new approach can result in significant savings in running time. A fur-
ther advantage of our approach for more traditional circuit diagnosis problems
is that a possible diagnosis of an error corresponds to the complement of a max-
imal satisfiable set of constraints [15]. In our method these are easy to generate
from the calculated maximal satisfiable sets.

The outline of the remainder of this paper is as follows. We first give some
background definitions in Section 2. Next, we examine the best previous ap-
proach to the problem we are aware of, that of Garćıa de la Banda et al [5]
in Section 3. In Section 4, we describe the Dualize and Advance approach and
how it can be adapted and optimised for the constraint context. In Section 5
we describe the results of experiments comparing the two approaches. Finally in
Section 6 we conclude and discuss future work.

2 Background

Let us start by introducing the notation which will be used herein. A constraint
domain D defines the set of possible values of variables. A valuation θ, written
{v1
→ d1, . . . , vm
→ dm}, di ∈ D, 1 ≤ i ≤ m, maps each variable vi to a value di

in the domain.
A constraint c is a relation on a tuple of variables vars(c). Let vars(c) =

(vi1 , . . . , vin) then c defines a subset vals(c) of Dn. A valuation θ ≡ {v1
→
d1, . . . , vm
→ dm} is a solution of constraint c if (di1 , . . . , din) ∈ vals(c).

A set of constraints C is satisfiable iff there exists a solution θ of C. Otherwise
it is unsatisfiable. We assume an algorithm sat(C) which returns true if C is
satisfiable and false otherwise.

We will also be interested in incremental satisfaction algorithms. Incremen-
tal satisfiability checks process each of the constraints one at a time. Hence,
to answer the question sat({c1, . . . , cn}) we compute the answers to questions
sat({c1}), sat({c1, c2}), . . ., sat({c1, . . . , cn−1}) and finally sat({c1, . . . , cn}). We
describe incremental satisfiability algorithms as a procedure isat(cn, state) which
takes a new constraint cn and an internal state representing a set of constraints
{c1, . . . , cn−1} and returns a pair (result, state′) where result = sat({c1, . . . , cn})
and state′ is a new internal state representing constraints {c1, . . . , cn}.

Since we are focusing on debugging, we will use the Herbrand equation
constraint domain H. That is, equations over uninterpreted function symbols,

Discovery of Minimal Unsatisfiable Subsets of Constraints 177

such as the constraint arising in Hindley-Milner typing. The complexity of sat
for this class of constraints is O(n) where n is the number of symbols in the
constraint [14]. The complexity of n calls to isat, (true, s1) = isat(c1, true),
(true, s2) = isat(c2, s1), . . ., (result, sn) = isat(cn, sn−1) is O(nA−1(n)) where
A−1(n) is the inverse Ackerman’s function. The amortized incremental com-
plexity of isat(c, state) is thus effectively constant. We will use calls to isat
as one measure for the complexity of our algorithms. For this purpose as call
sat({c1, . . . , cn}) is equivalent to n calls to isat.

For a given problem, we define the constraint universe U as the set which
contains every possible constraint that can be considered. In a typing problem
these are all the type constraints represented by the program to be typed, while
in circuit diagnosis it is all the constraints defining the circuit and its inputs and
outputs.

A constraint set C is a minimal unsatisfiable constraint set if C is unsatisfi-
able and each C′ ⊂ C is satisfiable. A constraint set C is a maximal satisfiable
constraint set if C is satisfiable and each C′ ⊃ C (where C′ ⊆ U) is unsatisfi-
able. For a set of constraints S, we define its complement to be S = U − S. Let
S = {S1, S2, . . . , Sk} be a set of constraint sets (i.e. each of S1, S2 etc is a set of
constraints). We define S, the complement of S, to be the set of complements of
each of the constraint sets. i.e. S = {S1, S2, . . . , Sk}.

Let A = {A1, A2, . . . , An} be a set of constraint sets. We say a set P ⊆ U is
a hitting set of A if (P ∩ A1 �= ∅) ∧ (P ∩ A2 �= ∅) ∧ . . . ∧ (P ∩ An �= ∅). We say
that P is a minimal hitting set of A, if P is a hitting set of A and each S ⊂ P
is not a hitting set of A. We define HST (A) to be the set of all the minimal
hitting sets of A. The cross product of two sets of set A = {A1, . . . An} and
B = {B1, . . . , Bm} is denoted as A⊗B = {Ai ∪Bj | i ≤ n, j ≤ m}.

3 Best Previous Approach

The best previous approach we are aware of for finding all minimal unsatisfiable
subsets of a constraint set is from Garćıa de la Banda et al [5], who extended
approaches by [13] and [12]. Essentially all these approaches rely on enumerating
all possible subsets of the constraints and checking which are unsatisfiable but
all of whose subsets are satisfiable.

The code for min unsat shown below gives the core. The call min unsat(∅,U ,∅)
it finds all minimal unsatisfiable subsets of U . The first argument is used to avoid
repeatedly examining the same subset. The call min unsat(D, P , A) traverses of
all subsets of the set D ∪ P which include D, i.e. {D ∪ P ′ | P ′ ⊆ P}. D refers
to definite elements, ones which must appear in all subsequent subsets and P
refers to possible elements, ones which may appear in subsequent subsets. The
argument A collects all the minimal unsatisfiable subsets found so far. This call
explores all subsets {D ∪ P ′ | P ′ ⊆ P} in an order such that all subsets of
D∪P are explored before the while loop in the call min unsat(D,P ,A) finishes.
When a satisfiable subset is found then the algorithm need not look at its further
subsets. If an unsatisfiable set is found then it is added to the collection A after

178 James Bailey and Peter J. Stuckey

all its subsets have been examined, unless there is already a subset of it in A.
The code returns the set of minimal unsatisfiable subsets found.

min unsat(D, P , A)
if (sat(D ∪ P)) return A
while (∃c ∈ P)

P := P − {c}
A := min unsat(D, P , A)
D := D ∪ {c}

endwhile
if (¬∃A ∈ A such that A ⊂ D) A := A ∪ {D}
return A

This simple approach is improved in [5] by (a) detecting constraints that
are present in all minimal unsatisfiable subsets by preprocessing, (b) taking into
account constraints that must always be satisfiable once other constraints are
not present, (c) using reasoning about independence of constraints to reduce
the number of subsets examined, and most importantly (d) using incremental
constraint solving to select which elements c to select first in the while loop.
The last modification is the most important in terms of reducing the amount of
satisfaction checking and subsets examined.

Essentially by performing the satisfiability check sat(D ∪ P) incrementally
we find the first constraint ci where D ∪ {c1, . . . , ci−1} is satisfiable and D ∪
{c1, . . . , ci} is not. This guarantees that ci appears in some minimal unsatisfiable
set. By choosing c = ci in the while loop we (hopefully) quickly find large
satisfiable subsets thus reducing the search.

4 Dualization Approach

We now describe our new approach for determining all the minimal unsatisfiable
sets of constraints. It is based on a technique that has been proposed in the area
of data mining, called Dualize and Advance [10], for discovery of interesting
patterns in a database. Other similar algorithms exist from work in hypergraph
transversals [3].

The key idea is that for a given constraint universe U , there exists a rela-
tionship between the minimal unsatisfiable sets of constraints and the maximal
satisfiable sets of constraints. In particular, suppose we have a set G of satisfiable
constraint sets, then HST (G) is the collection of the smallest sets which are not
contained in any set from G. If we let G be the collection of all the maximal
satisfiable constraint sets, then HST (G) is the collection of all the smallest sets
that are not contained in any maximal satisfiable set (i.e. the minimal unsatis-
fiable constraint sets). Furthermore, if G is a collection of some, but not all the
maximal satisfiable constraint sets, then HST (G) must contain at least one set
which is satisfiable and is not contained in any set in G (see [10] for proof).

Example 1 Suppose for universe U = {c1, c2, c3, c4} the maximal satisfiable
sets of constraints are G = {{c3}, {c4}, {c2}}. Then the complements sets are

Discovery of Minimal Unsatisfiable Subsets of Constraints 179

G = {{c1, c2, c3}, {c1, c3, c4}, {c1, c2, c4}} and the minimal unsatisfiable sets are
HST (G) = {{c1}, {c2, c4}, {c2, c3}, {c3, c4}}.

We now present the algorithm for jointly generating both the minimal un-
satisfiable sets and the maximal satisfiable sets. Although the stated purpose of
our work is to find the minimal unsatisfiable sets, it is worth noting that the
maximal satisfiable sets are also useful. In particular, if there are several possi-
ble error explanations, then the constraints which appear in the most maximal
satisfiable sets are least likely to be in error. Similarly for circuit diagnosis, the
minimal diagnoses are the complements of the maximal satisfiable sets [15].

The dualize and advance algorithm daa min unsat is given in Figure 1. The
explanation is as follows. The algorithm maintains a number of variables: X is
a satisfiable set, which is grown into a maximal satisfiable set M by the grow
procedure which simply adds new constraints that do not cause unsatisfiability;
A is the set of minimal unsatisfiable subsets currently found; X is the comple-
ments of the maximal satisfiable sets currently found; and N are the hitting sets
for X which are the candidates for minimal unsatisfiable subsets.

Initially all the set of minimal unsatisfiable sets and complements of maximal
satisfiable sets are empty. The X variable is set to ∅. In the repeat loop, the
algorithm, repeatedly grows M to a maximal satisfiable subset, adds its comple-
ment to X and calculates the new hitting sets for X. This gives the candidates
N for minimal unsatisfiable subsets.

For each of these not already recognised as a minimal unsatisfiable subset we
check satisfiability. If the set S is satisfiable then it is the starting point for a
new maximal satisfiable set, and we break the for loop and continue. Otherwise
S is added to the minimal unsatisfiable subsets A. When we find no satisfiable
S then we have discovered all minimal unsatisfiable subsets.

Example 2 We trace the behaviour of the algorithm daa min unsat using Ex-
ample 1, where the minimal unsatisfiable sets are G = {{c1}, {c2, c4}, {c2, c3},
{c3, c4}} and the maximal satisfiable sets are {{c4}, {c3}, {c2}}. We show the
values of key variables just before the for loop for each iteration of the repeat
loop.
Iter. M X N = HST (X)
1 {c2} {{c1, c3, c4}} {{c1}, {c3}, {c4}}
2 {c3} {{c1, c3, c4}}, {c1, c2, c4}} {{c4}, {c1}, {c2, c3}}
3 {c4} {{c1, c3, c4}, {c1, c2, c4}, {c1, c2, c3}} {{c1}, {c2, c3}, {c2, c4}, {c3, c4}}

Each iteration produces a new complement of a maximum satisfiable set.
Once all maximal satisfiable sets have been found, the repeat loop terminates.

4.1 Determining the Hitting Sets HST

A core part of the procedure is the calculation of the hitting sets on each itera-
tion of the while loop. There are many possible methods for computing hitting
sets. This problem is also known as the hypergraph transversal problem. We use a

180 James Bailey and Peter J. Stuckey

daa min unsat(U)
A := ∅
X := ∅
X := ∅
repeat

M := grow(X,U);
X := X ∪ {U − M}
N := HST (X)
X := ∅
for (S ∈ N − A)

if (sat(S))
X := S
break

else A := A ∪ {S}
endfor

until (X = ∅)
return (A)

grow(S,U)
for (c ∈ U − S)

if (sat(S ∪ {c})) S := S ∪ {c}
endfor
return(S)

Fig. 1. Dualize and advance algorithm for finding minimal unsatisfiable sets.

method first described by Berge [2], since it is simple to implement and behaves
reasonably efficiently. More complex techniques do exist though which have bet-
ter worst case complexity (see [7]) or are better in practice for large problems
(see [1]). The basic idea of the Berge algorithm is that to compute the hitting
sets of a set G, the sets contained in G are first ordered, and then partial cross
products of these sets are computed, with the output being minimised at each
step.
Let G = {S1, S2, . . . , Sk} and define Gi = {S1, . . . , Si}. Then HST (Gi) is given
by the formulas
HST (G1) = {{c} | c ∈ S1}
HST (G2) = HST (G1 ∪ {S2}) = Min(HST (G1)⊗ {{c} | c ∈ S2})
. . .
HST (Gi) = HST (Gi−1 ∪ {Si}) = Min(HST (Gi−1)⊗ {{c} | c ∈ Si})
where Min(G) is the set G with all non-minimal subsets removed.

Min(G) = {S | S ∈ G ∧ (∀T ∈ G (T ⊆ S) ⇒ (T = S)}.

4.2 Incremental Hitting Set Calculation

Looking more closely at the procedure for minimal hitting set calculation, we
can see that it is incremental in nature – the hitting sets HST (G) of a set

Discovery of Minimal Unsatisfiable Subsets of Constraints 181

G are computed by considering each set from G in turn and calculating the
partial hitting sets. Thus, by remembering the partial hitting sets HST (G1),
HST (G2), etc, we can incrementally calculate the new hitting sets of X when
a new set of constraints is added. Hence we can replace the line

N := HST (X)

by

N := Min(N⊗ {{c} | c ∈ U −M})

4.3 Complexity of the Algorithm

The complexity of the algorithm is as follows. The number of iterations of the
repeat loop is equal to the number of maximal satisfiable sets, since in each
iteration we find one more M . In each iteration we call grow once which costs
at most |U | incremental calls to sat, for Herbrand equations the cost is thus
O(|U |) overall. Each minimal unsatisfiable set is found within the for loop of
daa min unsat and needs no further processing once it has been found to be un-
satisfiable. Each minimal unsatisfiable set requires at most |U | incremental calls
to sat, thus again O(|U |) overall for Herbrand equations. If A is the collection of
all the minimal unsatisfiable sets and X is the collection of all the complements
of maximal satisfiable sets, then overall the complexity (using the optimisation
from section 4.2) is O(|A| × |U |+ |X| × |U |+ cost(HST (X))).

The core part of the cost is the calculation of the hitting sets HST (X),
done incrementally. In general, the number of hitting sets (and thus the size of
X) can be exponential in |U |. Also, as we will show shortly (Example 3), the
number of partial hitting sets may also be exponential, even when the size of X
is polynomial. The addition of a new set Si to G, can either increase the number
of minimal hitting sets by a factor of |Si|, or cause a superpolynomial decrease
in the number of minimal hitting sets [18]. The exact complexity of the Berge
algorithm is not yet well understood, but an upper bound for the cost(HST (X))
is O(2|U|).

4.4 Optimisation of Hitting Set Computation
Using the Constraint Graph

The order in which the sets of G are considered when computing the hitting
sets can have a significant impact on the running time of the hitting set calcula-
tion. This is because the size of the partial hitting sets can blow up for certain
orderings. An example (based on one from [6]) is:

Example 3 Let G = {{ci, cj} | i ≤ 10, j ≤ 10} Suppose we order the sets of
G to be {{c1, c2}, {c3, c4}, {c5, c6}, {c7, c8}, {c9, c10}, . . .}}. Then |HST (G5)| =
25, whereas if they are ordered as {{c1, c2}, {c2, c3}, {c1, c3}, {c1, c4}, {c2, c4}, . . .}
then |HST (G5)| = 3. In other words, a blowup of the intermediate results occurs
for the first ordering, but not the second.

182 James Bailey and Peter J. Stuckey

To address this problem, a natural heuristic to use is that the sets contained in
X should be ordered in increasing cardinality, to minimise the number of partial
hitting sets. However, we do not have direct information about the cardinality
of the next M to be generated.

A heuristic to try and achieve this is as follows: When maximising a set in
the grow procedure, we should add constraints in an order that ‘maximises’ the
number of constraints in the final grown M set. Therefore, we should add the
constraints most likely to cause unsatisfiability last of all. To identify such con-
straints, we use a constraint graph to help identify a global ordering of all the
constraints in the universe, with constraints likely to cause unsatisfiability occur-
ring at the end of the ordering and constraints not likely to cause unsatisfiability
occurring at the start of the ordering.

Given a set of constraints U , the constraint graph g(U) is a graph where each
vertex in the graph corresponds to one of the constraints and there is an edge
between two vertices c1 and c2 iff there exists a v such that v ∈ vars(c1) and
v ∈ vars(c2). We estimate the centre of the constraint graph (the vertex will the
least maximal distance from all other nodes) and then order vertices according
to their distance from the centre. Constraints closest to the centre are at the
beginning of the ordering, since these are expected to participate in the most
minimal unsatisfiable subsets and those furthest away from the centre are at the
end of the ordering.

4.5 Discussion of the Algorithm

As mentioned, our hitting set algorithm is based on the Dualize and Advance
algorithm for mining interesting patterns (sets of items) in a database [10]. Work
in [19] also presented a practical implementation of Dualize and advance for data
mining. Our approach differs from both these works in a number of ways

– The context is constraints and not sets of items.
– The size of the output in data mining problems (number of maximally sat-

isfiable sets and number of minimal unsatisfiable sets) is huge, this means
that Dualize and Advance is not practical for data mining requirements [8,
19]. However, in the constraint scenario the number of minimal unsatisfiable
sets is likely to be small, since the scenario is type error debugging. We are
not aware of any previous work where Dualize and Advance has been shown
to be efficient for an important practical problem.

– Knowledge of the constraint graph can be used as a means for improving the
algorithm.

Dualize and Advance is quite similar to Reiter’s approach for model based
diagnosis ([15]), which uses the computation of hitting sets to relate conflict
sets (similar to unsatisfiable sets) and diagnoses (complements of maximum
satisfiable sets). The key difference is that Reiter’s approach uses hitting set
calculation to obtain each new minimum unsatisfiable set, whereas Dualize and
Advance uses hitting set calculation to obtain each new maximum satisfiable
set. Dualize and Advance has the important advantage that a satisfiable set can

Discovery of Minimal Unsatisfiable Subsets of Constraints 183

be grown into a maximum satisfiable set using an incremental solver. Reiter’s
technique requires a minimal unsatisfiable subset to be obtained from a larger
unsatisfiable set by removal of constraints and there isn’t the same opportunity
for incremental solver use. Reiter’s method also requires the costly maintenance
of a tree structure for computing the hitting sets.

5 Experimental Evaluation

Benchmark |U | |A| |X|
const 72 6 (37) 88 (70)

rotate 81 8 (65) 68 (80)

filter 98 12 (24) 5427 (95)

drop 156 11 (62) 599 (152)

rot13 159 9 (10) 376379 (154)

permute 239 16 (77) 120 (237)

plot 448 10 (15) 300 (445)

diff 610 4 (46) 46 (609)

msort 1016 4 (34) 2699 (1013)

Fig. 2. Type error benchmark problems.

In order to investigate the ben-
efits of our technique, we have
implemented a prototype system
in SICStus Prolog. The evalua-
tion uses a number of benchmark
problems arising from type error
debugging. These are taken from
sets of constraints generated by
the Chameleon system [17] for de-
bugging Haskell programs and use
the efficient satisfiability procedure
for solving Herbrand equations pro-
vided by SICStus Prolog. Figure 2
shows the characteristics of these benchmarks: the number of constraints |U |,
the number of minimal unsatisfiable subsets |A| (and in brackets the average
size of each minimal unsatisfiable subset) and the number of maximal satisfiable
subsets |X| (and in brackets the average size). Note that |X| is the number of
complements of the maximal satisfiable sets, which is equal to the number of
maximal satisfiable sets. These benchmark problems were chosen due to their
challenging size and each has a constraint universe of size 72 or more constraints.
Näıvely each problem then requires considering at least 272 subsets.

The algorithms from Sections 3 and 4 were coded in SICStus Prolog. The
experiments were run on a Dell PowerEdge 2500 with Intel PIII, 1GHz CPU
and 2 GB memory. All times are measured in seconds. We compare against two
versions of the algorithms from [5]. The first 3.648 (using the terminology of
that paper) performs (a) preprocessing to detect constraints in all unsatisfiable
subsets, (b) eliminates constraints which are always satisfiable after other con-
straints are deleted, (c) breaks constraints up that are independent and (d) uses
the incremental search approach. The second 3.8 simply combines (a) and (d).
The first version is the method that (in general) examines the fewest subsets,
while the second is the one that (in general) performs the fewest isat checks.

Figure 3 shows the running times for four different algorithms. The first two
sets of times are those from the system [5] with the parameter sets 3.648 and 3.8.
The second two sets of running times are for the Dualize and Advance algorithm.
DAA.1 uses the basic algorithm with the optimisations from 4.2. DAA.2 uses
the basic algorithm with the optimisations from 4.2 and 4.4

184 James Bailey and Peter J. Stuckey

Benchmark [5]3.648 [5]3.8 DAA.2 DAA.1

const 1.8 1.3 1 1

rotate 1.3 1.5 1 1

filter 16441 7505 381 644

rot13 1269 71089 27780 30807

drop 2152 3037 77 145

permute 296 57 14 7

plot 1932 1868 44 46

diff 387 11 14 15

msort 908543 91412 1430 1420

Fig. 3. Comparative running times to find all
minimal unsatisfiable sets (Seconds).

Looking at Figure 3, we see
that the hitting set algorithms are
substantially faster in the majority
of cases. The one exception is the
rot13 benchmark, where there are
a huge number of maximally sat-
isfiable sets. The structure of the
rot13 minimal unsatisfiable sets
gives a clue as to why this may be
so. There are nine of these, with
several of them being quite differ-
ent from one another (i.e. sharing
few constraints). This may be be-
cause there is more than one independent type error in the rot13 program. The
rot13 benchmark also illustrates the importance of independence optimizations
for the approach of [5].

The ordering of the constraints only makes a slight difference in many cases
(DAA.1 versus DAA.2), but in others it can reduce computation time by half.

Benchmark [5]3.648 [5]3.8 DAA

const 7039 147945 6567

rotate 6934 81440 6028

filter 1956330 20692654 532208

rot13 86421 137706583 59844542

drop 118046 5154734 94041

permute 56464 106335 30119

plot 1649205 1649205 135200

diff 179685 180864 28856

msort 6890081 32858078 2743337

Fig. 4. Number of incremental satisfiability
checks (calls to isat) to find all minimal un-
satisfiable sets.

Benchmark [5]3.648 [5]3.8 DAA.2

const 1.5 0.2 0.8

rotate 2.6 0.2 1.1

filter 5.4 0.7 0.2

rot13 22.8 2.5 0.4

drop 41 4.9 23.6

permute 60.5 4.3 12.1

plot 158 8.7 41.9

diff 276 6.6 13.5

msort 4889 146 36.7

Fig. 5. Comparative running times to find one
minimal unsatisfiable set (Seconds).

In Figure 4 we show the number
of calls to isat made by each of the
algorithms. We see that the num-
ber of calls to isat is substantially
reduced for the DAA algorithms
versus the others. Both versions of
DAA make exactly the same num-
ber of isat checks. Observe that
the only difference in running time
between DAA.2 and DAA.1 is the
time taken for (incremental) hit-
ting set calculation.

Looking at Figure 3, it is clear
that for some of the problems, the
amount of time taken, even for the
best hitting set algorithm (DAA.2)
may still be too high to be use-
ful for interactive debugging. One
strategy to cope with this is to pro-
vide the user with each minimal un-
satisfiable set as soon as it is found,
rather than waiting until all have
been computed. This way the user
may begin trying to discover the
source of the error earlier. Figure 5
shows the amount of time taken for
each algorithm to output the first

Discovery of Minimal Unsatisfiable Subsets of Constraints 185

minimal unsatisfiable set found. We see that the amount of time taken is gener-
ally more acceptable for interactive use and indeed the non hitting set algorithm
[5]3.8 is usually the fastest. A possible technique would thus be to run [5]3.8 in
parallel with DAA.2 and stop [5]3.8 after finding the first minimal unsatisfiable
set. This would provide the user with one minimal unsatisfiable set quickly, but
would still be likely compute the entire collection of minimal unsatisfiable in an
acceptable total elapsed time.

6 Conclusions and Future Work

Finding all minimal unsatisfiable sets is a challenging problem because it im-
plicitly involves considering each possible subset of a given set of constraints.
In this paper we investigated how to reduce as much as possible the number of
constraints sets that need to be examined. We presented a new method which
builds upon related work in data mining and showed it to be superior to the
best known previous method.

A promising direction for future work is to investigate the tradeoffs between
using the hitting set approach and that of [5] and see if a hybrid technique
combining the advantages of both can be developed.

Acknowledgements

We would like to thank Kathryn Francis for assistance with the implementation
and experimental evaluation, and Jeremy Wazny for providing the type error
benchmark problems.

References

1. J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast algorithm for comput-
ing hypergraph transversals and its application in mining emerging patterns. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), pages
485–488, 2003.

2. C. Berge. Hypergraphs, North Holland Mathematical Library, volume 45. Elsevier
Science Publishers B.V (North-Holland), 1989.

3. E. Boros, G. Gurvich, L. Khachiyan, and K. Makino. Dual bounded generating
problems: Partial and multiple transversals of a hypergraph. SIAM Journal on
Computing, 30(6):2036–2050, 2000.

4. B. Davey, N. Boland, and P.J. Stuckey. Efficient intelligent backtracking using
linear programming. INFORMS Journal of Computing, 14(4):373–386, 2002.

5. Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all mini-
mal unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international
conference on Principles and Practice of Declarative Programming, pages 32–43.
ACM Press, 2003.

6. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

186 James Bailey and Peter J. Stuckey

7. Michael L. Fredman and L. Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

8. B. Goethals and M. Zaki. Advances in frequent itemset mining implementations:
Introduction to FIMI03. In [9].

9. Bart Goethals and Mohammed Javeed Zaki, editors. Proceedings of the ICDM
2003 Workshop on Frequent Itemset Mining Implementations, FIMI’03, volume 90
of CEUR Workshop Proceedings, Melbourne, Florida, USA, 2003.

10. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma.
Discovering all most specific sentences. ACM Transactions on Database Systems,
28(2):140–174, 2003.

11. C. Haack and J. B. Wells. Type error slicing in implicitly typed, higher-order
languages. In Proc. of ESOP’03, LNCS, pages 284–301. Springer-Verlag, 2003.

12. B. Han and S-J. Lee. Deriving minimal conflict sets by CS-trees with mark set in
diagnosis from first principles. IEEE Transactions on Systems, Man, and Cyber-
netics, 29(2):281–286, 1999.

13. A. Hou. A theory of measurement in diagnosis from first principles. Artificial
Intelligence, 65:281–328, 1994.

14. M. Paterson and M. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

15. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

16. J. Silva and K Sakallah. Grasp – a new search algorithm for satisfiability. In
Proceeding of ICCAD’96, pages 220–228, 1996.

17. M. Sulzmann and J. Wazny. Chameleon.
http://www.comp.nus.edu.sg/~sulzmann/chameleon.

18. K. Takata. On the Sequential Method for Listing Minimal Hitting Sets. In Pro-
ceedings Workshop on Discrete Mathematics and Data Mining, 2nd SIAM Inter-
national Conference on Data Mining, 2002.

19. T. Uno and K. Satoh. Detailed description of an algorithm for enumeration of
maximal frequent sets with irredundant dualization. In [9].

Solving Collaborative Fuzzy Agents Problems
with CLP(FD)�

Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

School of Computer Science, Technical University of Madrid (UPM)
{susana,jgomez}@fi.upm.es

Abstract. Truth values associated to fuzzy variables can be represented
in an ordeal of different flavors, such as real numbers, percentiles, inter-
vals, unions of intervals, and continuous or discrete functions on different
domains. Many of the most interesting fuzzy problems deal with a dis-
crete range of truth values. In this work we represent these ranges using
Constraint Logic Programming over Finite Domains (CLP(FD)). This
allows to produce finite enumerations of constructive answers instead of
complicated, hardly self-explanatory, constraints expressions. Another
advantage of representing fuzzy models through finite domains is that
some of the existing techniques and algorithms of the field of distributed
constraint programming can be borrowed. In this paper we exploit these
considerations in order to create a new generation of collaborative fuzzy
agents in a distributed environment.

Keywords: Fuzzy Prolog, Modeling Uncertainty, (Constraint) Logic
Programming, Constraint Programming Application, Finite Domains,
Multi-Agent Systems, Collaborative Agents.

1 Introduction

The introduction of Fuzzy Logic into Logic Programming (LP) has resulted into
the development of several “Fuzzy Prolog” systems. These systems replace the
inference mechanism of Prolog with a fuzzy variant which is able to handle
partial truth. Most of these systems implement the fuzzy resolution introduced
in [11], examples being the Prolog-Elf system, Fril Prolog system and the F-
Prolog language. However, there was no common method for fuzzifying Prolog
as noted in [15]. Some of these Fuzzy Prolog systems only consider the fuzziness
of predicates whereas other systems consider fuzzy facts or fuzzy rules. There is
no agreement about which Fuzzy Logic must be used. Most of them use min-
max logic (for modeling the conjunction and disjunction operations) but other
systems just use Lukasiewicz logic.

There is also an extension of Constraint Logic Programming [1], which models
logics based on semi ring structures. This framework can model the only semi
ring structure that is the min-max Fuzzy Logic.
� This work has been partially funded by the European Union IST program under

contract IST-2001-34717, Amos, and by Spanish MCYT projects TIC 2002-0055,
CUBICO and TIC 2003 - 01036, SOFFIE.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 187–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Recently, a theoretical model for Fuzzy Logic Programming without negation,
which deals with many-value implications, has been proposed by Votjas [18].
Through the last few years a large amount of work has been published by Medina
et al. ([12]) about multi-adjoint programming, which describe a theoretical
model, but no means of implementation.

In [14], truth values are interpreted as intervals but, more generally, in [4] a
Fuzzy Prolog Language that models interval-valued Fuzzy Logic, implemented
using CLP(R) [8], was presented. This Fuzzy Prolog system uses on the one
hand the original inference mechanism of Prolog, and on the other hand con-
straint facilities and operations provided by CLP(R) to represent and handle
the concept of partial truth.

In this approach a truth value will be a finite union of sub-intervals on [0, 1].
An interval is a particular case of union of one element, and a unique truth value
is a particular case of having an interval with only one element. In this Fuzzy
Prolog a truth value will be propagated through the rules by means of an ag-
gregation operator. The definition of aggregation operator is general in the sense
that it subsumes conjunctive operators (triangular norms like min, prod, etc.),
disjunctive operators (triangular co-norms, like max, sum, etc.), average oper-
ators (like arithmetic average, quasi-linear average, etc) and hybrid operators
(combinations of the above operators.

In this paper we take as starting point the syntax and semantics of the
continuous Fuzzy Prolog approach to develop a discrete system which handles a
finite number of truth values. Our implementation is not based on CLP(R) [7]
(as in [4]) but CLP(FD) [17] is used instead. As a direct consequence, Fuzzy
Prolog derives into discrete Fuzzy Prolog in a very natural way, allowing to
represent truth values discretely and therefore produce finite enumerations of
constructive answers. CLP(FD)techniques like propagation and labeling can be
applied to improve efficiency in discrete fuzzy reasoning. Another advantage of
a CLP(FD)−based implementation is that existing algorithms from the field
of distributed constraint programming [19] can be adopted to design and build
collaborative fuzzy agents systems to solve complex, inherently distributed fuzzy
problems. We have developed this work using the Ciao Prolog system [5], taking
advantage of its modular design and some of its extensions (constraints over
real numbers and finite domains, distributed execution, modular code expansion
facilities).

The rest of the paper is organized as follows. Section 2 summarizes the syntax
and semantics of the Fuzzy Prolog system (presented in [4]) but restricted to dis-
crete fuzzy functions. Section 3 provides an intuitive introduction to CLP(FD).
Section 4 describes the collaborative agents system based in CLP(FD) that we
have used, and provides some motivating examples. Finally, we conclude and
discuss some future work (Section 6).

2 Fuzzy Prolog

Part of the future work described in [4] was the implementation of a continous
Fuzzy Prolog. In [4] fuzzy functions are continuous. Representing fuzziness by

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 189

means of continuous functions is very powerful and helps expressiveness but
many real fuzzy problems are modeled using a finite set of values (although
the result of a fuzzy function can be more than one only value, e.g. a union of
intervals with a number of consecutive values). In this work we have provided an
implementation of a discrete Fuzzy Prolog. Basically, we use similar syntax to
that in [4] but the semantics and the mechanism of fuzzy resolution has changed.
In [4] truth values were represented using constraints over real numbers. In this
paper we represent truth values using finite domains, which support discreteness.

2.1 Truth Value

Given a relevant universal set X , any arbitrary fuzzy set A is defined by a
function A : X → [0, 1], unlike the crisp set that would be defined by a function
A : X → {0, 1}. This definition of fuzzy set is by far the most extended in the
literature as well as in the various successful applications of the fuzzy set theory.
However, several more general definitions of fuzzy sets have also been proposed.
The primary reason for generalizing ordinary fuzzy sets is that their membership
functions are often overly precise. They require the assignment of a particular
real number to each element of the universal set. However, for some concepts and
contexts, we may only be able to identify approximately appropriate membership
functions. An option is considering a membership function which does not assign
to each element of the universal set one real number, but an interval of real
numbers. Fuzzy sets defined by membership functions of this type are called
interval-valued fuzzy sets [14]. These sets are defined formally by functions of
the form A : X → E([0, 1]), where E([0, 1]) denotes the family of all closed
intervals of real numbers in [0, 1].

0

0.2

1

0.8
0.9

0.7
0.6
0.5
0.4
0.3

0.1

x x

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

Borel Algebra Discrete Borel Algebra

Fig. 1. Truth Value: Borel Algebra versus
Discrete Borel Algebra

[4] proposes to generalize this
definition, aiming to membership
functions which assign one element
of the Borel Algebra over the in-
terval [0, 1] to each element of the
universal set. These sets are de-
fined by functions of the form A :
X → B([0, 1]), where an element
in B([0, 1]) is a countable union of
sub-intervals of [0, 1]. In the present
work, as continuous functions are no
longer used, ranges of discrete (con-
secutive) values are handled instead
of intervals.

Definition 1 (discrete-interval). A discrete-interval [X1, XN]d is a set of a
finite number of values, {X1, X2, ..., XN−1, XN}, between X1 and XN , 0 ≤ X1 ≤
XN ≤ 1, such that ∃ 0 < ε < 1. Xi = Xi−1 + ε, i ∈ {2..N}.

190 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Therefore, we use functions of the A : X → Ed([0, 1]) form or A : X →
Bd([0, 1]) where we define Ed as the algebra that handles intervals of discrete
values in [0, 1] and Bd as the algebra that handles union of intervals of discrete
values in [0, 1]. For example the truth value of x in B([0, 1]) is [0.2, 0.4]∪ [0.6, 0.9]
(that includes two continuous intervals) and a truth value of x in Bd([0, 1]) is
[0.2, 0.4]d∪ [0.6, 0.9]d (that is equivalent to {0.2, 0.3, 0.4}∪{0.6, 0.7, 0.8, 0.9}, i.e.
{0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9}. See Figure 1.

2.2 Aggregation Operators

The truth value of a goal will depend on the truth value of the subgoals which are
in the body of the clauses of its definition. In [4] aggregation operators are used to
propagate the truth value by means of fuzzy rules. Fuzzy sets aggregation is done
using the application of a numeric operator of the form f : [0, 1]n → [0, 1]. If it
verifies f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and in addition it is monotonic and
continuous, then it is called aggregation operator. In this work we use monotonic
but not continuous aggregation operators.

If we deal with the second definition of fuzzy sets it is necessary to gener-
alize from aggregation operator of numbers to aggregation operator of intervals.
Following the theorem proved by Nguyen and Walker in [14] to extend T-norms
and T-conorms to intervals, [4] proposed a definition of operator for union of
intervals (union-aggregation) where operators are continuous functions. In the
presentation of the theory of possibility [21], Zadeh considers that fuzzy sets
act as an elastic constraint on the values of a variable and fuzzy inference as
constraint propagation.

In [4], truth values and the result of aggregations are represented by con-
straints. A constraint is a Σ-formula where Σ is a signature that contains the
real numbers, the binary function symbols + and ∗, and the binary predicate
symbols =, < and ≤. If the constraint c has a solution in the domain of real
numbers in the interval [0, 1] then we say c is consistent, and we denote it as
solvable(c).

In this work we provide some new definitions to face the discrete case:

Definition 2 (discrete-aggregation). Fuzzy sets discrete-aggregation is the
application of a numeric operator of the form f : [0, 1]n → [0, 1]. If it verifies
f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and in addition it is monotonic.

Notice the operator is not continuous.

Definition 3 (discrete-interval-aggregation). Given a discrete-aggregation
f : [0, 1]n → [0, 1], a discrete-interval-aggregation F : Ed([0, 1])n → Ed([0, 1]) is
defined as follows:

F ([xl
1, x

u
1]d, ..., [xl

n, xu
n]d) = [f(xl

1, ..., x
l
n), f(xu

1 , ..., xu
n)]d

Definition 4 (discrete-union-aggregation). Given a discrete-interval-ag-
gregation F : Ed([0, 1])n → Ed([0, 1]) defined over discrete-intervals, a discrete-
union-aggregation F : Bd([0, 1])n → Bd([0, 1]) is defined over union of discrete-
intervals as follows: F(B1, . . . , Bn) = ∪{F (Ed,1, ..., Ed,n) | Ed,i ∈ Bi}

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 191

2.3 Fuzzy Language

The alphabet of our language consists of the following kinds of classical symbols:
variables, constants, function symbols and predicate symbols. A term is defined
inductively as follows:

1. A variable is a term.
2. A constant is a term.
3. if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

If p is an n-ary predicate symbol, and t1, . . . , tn are terms, then p(t1, . . . , tn)
is an atomic formula or simply an atom. A fuzzy program is a finite set of fuzzy
facts, and fuzzy clauses and we obtain information from the program through
fuzzy queries. They are defined below:

Definition 5 (fuzzy fact). If A is an atom, A ← v is a fuzzy fact, where v, a
truth value, is an element in Bd([0, 1]).

Definition 6 (fuzzy clause). Let A, B1, . . . , Bn be atoms, A←F B1, . . . , Bn is
a fuzzy clause where F is a discrete-interval-aggregation operator of truth values
in Bd([0, 1]), where F induces a discrete-union-aggregation as by definition 4.

Definition 7 (fuzzy query). A fuzzy query is a tuple v ← A ? where A is an
atom, and v is a variable (possibly instantiated) that represents a truth value in
Bd([0, 1]).

We represent the truth value v by means of constraints. For example, we use
expressions as: (v ≥ 0.4 ∧ v ≤ 0.7) ∨ (v = 0.9) to represent a truth value in
[0.4, 0.7]d

⋃
[0.9]d (i.e. the truth value belongs to the set {0.4, 0.5, 0.6, 0.7, 0.9}).

Notice that in the above example we work with ε = 0.1 but we can work with
the precision we decide. For example if we would work with more precision we
could represent the above example as (v ≥ 0.40 ∧ v ≤ 0.70) ∨ (v = 0.90) to
represent a truth value in [0.40, 0.70]

⋃
[0.90] (i.e. the truth value belong to this

set {0.40, 0.41, 0.42, ..., 0.69, 0.70, 0.90}) where ε = 0.01. In our implementation
we consider that the precision is the minimum unit of decimals in which we
represent the discrete (i.e., [0.4, 0.7]d with ε = 0.1, [0.40, 0.70]d with ε = 0.01,
[0.425, 0.778]d with ε = 0.001, etc.).

3 Introduction to CLP(FD)

Constraint Logic PSrogramming is an extension of Logic Programming, usu-
ally (but not necessarily) taking the Prolog language as base, which augments
LP semantics with constraint (e.g., equation) handling capabilities, including
the ability to generate constraints dynamically (e.g., at run time) to represent
problem conditions and also to solve them by means of internal, well-tuned,
user-transparent constraint solvers. Constraints can come in very different fla-
vors, depending on the constraint system supported by the language. Examples
of well-known constraint systems are linear [dis]equations, either over R or over

192 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Q [7], H (equations over the Herbrand domain, finite trees), FD ([dis]equations
over variables which range over finite sets with a complete order among their
elements, usually represented as integers [17]).

main(X,Y,Z) :-

[X, Y, Z] in 1..5,

X - Y .=. 2*Z,

X + Y .>=. Z,

labeling([X,Y,Z]).

Fig. 2. CLP(FD) program

FD is one of the more widely used constraint
domains, since the finiteness of the domain of the
variables allows, in the worst case, a complete
traversal of each variable range when searching for
a solution. This gives complete freedom to the type
of equations an FD system can handle1.

Figure 2 shows a toy CLP(FD) program, with
the same overall structure of other larger CLP(FD) programs. Briefly, the declar-
ative reading of the program is that it succeeds for all values of X , Y and Z
such that

X, Y, Z ∈ N ∧ 1 ≤ X, Y, Z ≤ 5 ∧ X − Y = 2 ∗ Z ∧ X + Y ≥ Z

and fails if no values satisfies all of these constraints. Operationally, and also
from the viewpoint of a programmer, the program first declares initial ranges
for variables X, Y, and Z2, then a set of relationships are set up among them,
and finally a search procedure is called to bind the variables to definite values.
The first phase (setting up equations) fires a process called propagation, in which
some values can be removed from the domain of the variables (e.g., from 1 ≤
X, Y, Z ≤ 5 and X + Y ≤ Z, the values 4 and 5 can be removed from the
domain of X and Y). Usually this state does not end with a definite value for
each variable, which is sought for in a second search process, called labeling or
enumeration: variables in the problem are assigned values within their domains
until all of them have a unique value satisfying all the equations in the problem.
In this process, if some assignment is inconsistent with the equations, the system
backtracks, looking for alternative assignments. These two phases are radically
different in that propagation is a deterministic process, while labeling is non-
deterministic. In fact, after each assignment made by the labeling process, a
series of propagation steps can take place. In a real program several propagation
/ labeling phases can occur.

In the example, the initial propagation phase, before the labeling, reduces
the domains of the variables to be:

s0 : X ∈ {3, 4, 5} ∧ Y ∈ {1, 2, 3} ∧ Z ∈ {1, 2}

Different propagation schemes can have different effectiveness and yield domains
more or less tight. This is not a soundness / completeness problem, as labeling
will eventually remove inconsistent values. Removing as much values as possible
is advantageous, since this will make the search space smaller, but the compu-
tational cost of a more precise domain narrowing has to be balanced with the
savings in the search.

1 Note that many constraint systems do not have a complete solution procedure.
2 Large default ranges are automatically selected if this initialization is not present.

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 193

If we assume variables are labeled in lexicographical order, the next search
step will generate three different states, resulting from instantiating X to the
values in its domain. Each of these instantiations will in turn start a propagation
(and simplification) which will lead to the following three states:

s01 : X = 3 ∧ Y = 1 ∧ Z = 1
s02 : X = 4 ∧ Y = 2 ∧ Z = 1
s03 : X = 5 ∧ Y ∈ {1, 2, 3} ∧ Z ∈ {1, 2}

s01 and s02 are completely determined, and are final solutions. If only one solu-
tion were needed, the execution could have finished when X = 3 was executed.
If more solutions were required, s02 would be delivered and further exploration
performed, starting at s03, which would result in the children states s031, s032,
and s033, where Y is instantiated to the values in its domain:

s031 : X = 5 ∧ Y = 1 ∧ Z = 2
s032 : X = 5 ∧ Y = 3 ∧ Z = 1

At this point, no more search either propagation is possible, and all the
solutions to the constraint problem have been found. Note that the combination
X = 5, Y = 2 leads to an inconsistent valuation, and is not shown.

3.1 Discrete Fuzzy Prolog Syntax

Each Fuzzy Prolog clause has an additional argument in the head which repre-
sents its truth value in terms of the truth values of the subgoals of the clause
body. Though the syntax is analogous to the continuous case (see 2.3), a union
of intervals represents in the current approach a range of discrete values. An
interval of discrete values or a real number are particular cases of union of in-
tervals. The following examples (with decimal precision) illustrate the concrete
syntax of programs:
youth(45) ← [0.2, 0.5]

⋃
[0.8, 1] youth(45,V)::∼[0.2,0.5]v[0.8,1].

tall(john) ← 0.7 tall(john,V)::∼ 0.7.

swift(john) ← [0.6, 0.8] swift(john,V)::∼ [0.6,0.8].

goodplayer(X) ←min goodplayer(X,V)::∼min

tall(X), tall(X,Vt),

swift(X) swift(X,Vs).

These clauses are expanded at compilation time to constrained clauses that
are managed by CLP(FD) at run-time. Predicates . = ./2, . < ./2, . <= ./2,
. > ./2 and . >= ./2 are the Ciao CLP operators for representing constraint
inequalities. For example the first fuzzy fact is expanded to these Prolog clauses
with constraints

youth(45,V):- V in 2 .. 5, V in 8 .. 10.

And the fuzzy clause

p(X, Vp) ::∼ min q(X, Vq),r(X, Vr).

is expanded to

194 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

p(X,Vp) :- q(X,Vq),r(X,Vr),

minim([Vq,Vr],Vp),

Vp in 0..10.

One of the main advantages of discrete Fuzzy Prolog is that it can be applied
to a distributed environment more easily than its continuous counterpart [4]. In
a distributed setting, each agent has a partial knowledge of the truth values
associated to the fuzzy predicates that needs to be contrasted with the rest in
order to obtain a consistent global picture. That is the reason why truth value
variables appear explicitly in fuzzy predicates.

The code of predicate minim/23 is included at compile-time. Its function is
to add constraints to the truth value variables in order to implement the T-
norm min, in an analogous way to that in [4]. The implementation in the case
of CLP(FD) is the following:

minim([],_).

minim([X],X).

minim([X,Y|Rest],Min):-

min(X,Y,M),

minim([M|Rest],Min).

min(X,Y,Z):-

bounds(X, Lx, _Ux),

bounds(Y, Ly, _Uy),

do_min(Lx, Ly, X, Y, Z).

do_min(Lx, Ly, X, _Y, Z) :-

Lx .=<. Ly,

X .=. Z.

do_min(Lx, Ly, _X, Y, Z) :-

Lx .>. Ly,

Y .=. Z.

Like in the continuous case new aggregation operators can be added to the
system without any effort, thus it is easily user-extensible. We have implemented
the discrete version of the aggregation operators provided in [4] (min, max, prod,
luka).

3.2 Syntactic Sugar

Fuzzy predicates with piecewise linear continuous membership functions like
teenager/2 in Figure 3 can be written in a compact way using the operator
:: #.

teenager ::# fuzzy_predicate([(0,0),(8,0),(12,1),(14,1),(18,0),(120,0)]).

This friendly syntax is translated to arithmetic constraints. We can even
define the predicate directly if we so prefer. The code expansion is the following:

teenager(X,0):- X .>=. 0,

X .<. 8.

teenager(X,V):- X .>=. 8,

X .<. 12,

4*V .=. -12+X.

teenager(X,1):- X .>=. 12,

X .<. 14.

teenager(X,V):- X .>=. 14,

X .<. 18,

4*V .=. 18-X.

teenager(X,0):- X .>=. 18,

X .=<. 120.

3 minim/2 uses predicate bounds/3 from the Ciao Prolog CLP(FD)library. This pred-
icate obtains the upper and lower bounds of a finite domain variable.

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 195

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fig. 3. Uncertainty level of a fuzzy predicate

In Fuzzy Prolog it is possible to obtain the fuzzy negation of a fuzzy predicate.
For the predicate p/3, we will define a new fuzzy predicate called, for example,
notp/3 with the following line:

notp ::# fnot p/3.

that is expanded at compilation time as:

notp(X,Y,V) :- p(X,Y,Vp), V .=. 1 - Vp.

4 A Distributed CLP(FD) Approach
for Collaborative Agent Systems

Collaborative agent systems is a particular case of the well known multi agent
systems setting [6] where agents themselves determine their social behavior
according to their particular interests. This behavior may range from sheer com-
petitiveness to collaboration. In the first case, agents act in a scenario where
negotiation [16] is the key to solve conflicts in a decentralized way. Agents ex-
change proposals and counter proposals iteratively until an agreement is reached.
On the other hand, collaborative agents pursue common objectives using dis-
tributed scheduling policies. In early works about agents systems [9], scheduling
was generally done in advance, previous to execution. Currently, work has been
done in order to allow agents to coordinate dynamically, like [10]. However, it can
be argued that there is not really such absolute distinction between competitive
and collaborative agents. Moreover, the same agents can use different criteria
in order to combine local and global objectives, though paying the price of an
increased complexity that may lead to undesired effects. In approaches like [10],
adaptiveness confines itself to parameterizing an utility function that defines the
behavior of the agent.

Coordination in multi agents systems is a widely studied subject. Most co-
ordination approaches are based on utility functions, in the case of centralized
models, and game theory, in distributed proposals. Games theory assumes a com-
petitive scenario where agents negotiate to maximize their own benefit. Thus,
further coordination strategies are needed that favor a decentralized setting for
collaborative agents. In this direction, agent systems have been proposed that

196 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

act in a goal oriented manner using constraints [13] to represent (incomplete)
knowledge in a dynamically changing environment.

In our context, Fuzzy problems are modeled using CLP(FD), providing an
homogeneous knowledge representation that avoids the use of language gateways
like KIF and KQML upon agent communication. Each agent has a partial point
of view of the whole picture, represented by a subset of the constraints used
to model the problem. Since agents are pursued to be as independent from
each other as possible, no global control is implemented and decisions are made
asynchronously. However, some mechanism has to be established in order to
backtrack from globally inconsistent situations to a consistent previous state that
allows to take up execution and eventually reach a global solution, thus granting
a coherent behavior. Communication between agents is done via constraints
exchange. Since our approach is based on a CLP(FD) implementation which
handles constraints at a high-level, using attributed variables which contain first-
order terms, sending the store is made simply by term transmission (which can
be optimized by marshaling and compression).

Both execution mechanisms of CLP(FD), propagation and labeling, are
amenable to be distributed under different perspectives. If aimed to increasing
performance, or-parallelism can be applied to labeling given the independence
between the partial solutions generated by the potential assignments of values to
variables. But, in the environment of collaborative agents, where the knowledge
of the problem is typically distributed and spread among a number of entities,
we are more interested in how to reach a solution for problems which are dis-
tributed in an and-parallel fashion. In this context, propagation and labeling can
be executed in a collaborative agent system where the constraints store of the
problem has been split among agents, as described above. To this end, given
its conceptual simplicity, we have used algorithms based on the Asynchronous
Backtracking algorithm [19] (ABT) for Distributed Constraint Satisfaction prob-
lems [22]. We present an extension of the Ciao Prolog language that implements
further work on ABT to execute CLP(FD) programs in a distributed fashion,
and apply it to the case of collaborative fuzzy agents systems.

4.1 Asynchronous Backtracking and Collaborative Agents Systems

ABT was initially designed to model agent systems where each agent, own-
ing a single variable, is connected to others by means of the constraints where
these variables appear. ABT problems are represented as a directed graph where
nodes are the agents (as well as the variables in this framework) and links are
the constraints existing between their variables. Asynchronously, each agent as-
signs a value to its variable. This assignment is communicated to other agents,
which evaluate it and determine whether it is consistent or not with their own
assignment and their (partial) view of the system. In case of inconsistence a
backtracking process is initiated which returns to the previous consistent state
of execution.

Agents exchange two types of messages. ok? messages are used to send a
variable assignment to an agent for evaluation and nogood messages are sent by

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 197

the evaluating agent when an inconsistence is detected. Upon receipt of an ok?
message the evaluating agent first checks the consistence of this assignment with
his own and the rest of his partial view. If consistence is not such, it tries to
find a new value for its variable that reverts the situation to a coherent state.
If there is no such value, the agent starts a backtracking process and sends a
nogood message to one of the other agents.

ABT is sound and complete (if there is a solution, it finds it and fails oth-
erwise) but originally presented problems with infinite processing loops, and
asynchronous changes. In order to solve infinite loops, where agents change their
values over and over never reaching a stable state, it is necessary to set a partial
order among agents which determines for every constraint, or link in the directed
graph, which agent acts as an evaluator and which is the evaluated. This order
sets the direction of the link and the ok? messages. In case of inconsistence,
nogood messages are sent to the agent in the current agent’s partial view which
is the lowest according to this order.

On the other hand, an evaluating agent may send nogood messages to an
agent which has corrected its value already. To avoid this nogood messages in-
clude the partial view of the agent that started backtracking. Thus, the recipient
of the message only changes its value if it is consistent with the content of the
message. As an optimization, known inconsistent states can be incorporated as
new constraints to the systems.

ABT assignments are strongly committed. A selected value is not changed
until an exhaustive search is performed by agents below in the partial order.
This drawback is generally counterbalanced by the simplicity of the algorithm.
Other algorithms based on ABT, like Asynchronous Weak-Commit Search [20]
(AWC) get over this inconvenience.

However, ABT lacks several features which are desirable for a complete col-
laborative agents system. ABT only considers the case of just one variable per
agent, there is not distributed propagation (only labeling), and no means to de-
tect termination are provided. In our approach we have extended ABT with these
features. Thanks to the resolution mechanism in CLP(FD) systems, agents can
keep several variables by dividing execution into two stages which interact with
each other, a global one, directly extracted from ABT, and one local to each agent
where local consistency is ensured. Distributed propagation finds consistent in-
tervals of truth values and reduces the search space during an eventual labeling
phase increasing efficiency by reducing the number of messages exchanged by
the agents in this phase. To implement distributed propagation of the constraint
stores of each agent (minimizing the number of messages exchanged) a minimal,
dynamic spanning tree is built using the Dijkstra-Scholten algorithm [3] that
covers all the agents. When an agent first receives an ok? message it classifies
the sending agent as its parent. After that, it replies to every ok? with an ack
that contains its store so that the other agent can update its own store. When
the agent is in a quiescent state it leaves the spanning tree by sending an ack to
its parent. If it receives a further ok? this process starts all over.

198 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

Termination of propagation or labeling is detected by means of a Chandy-
Lamport algorithm [2]. This allows to combine both phases until a problem can
be declared as solved or failed.

5 A Practical Example

The distributed approach described in the previous section can be quite straight-
forwardly applied to handle complex fuzzy problems where global knowledge is
inherently distributed and shared by a number of agents, aiming to achieve a
global solution in a collaborative way. In this context we will show an example
related with criminal identification of suspects. From the point of view of our
test case police investments need to take into consideration the following factors:

– Physical aspects regarding the results of pattern matching between the robot
portrait database and the photography of the suspect.

– A psychic diagnostic provided by the psychologist.
– The set of evidences obtained by the CSI people.

None of these data are crisp. The subject is suspect in a degree which depends
on the combination of the truth values of all the factors previously enumerated.
Thus, this is a fuzzy problem, and also a distributed problem as the information
is obtained from different independent sources. In this case, our (collaborative)
agents are the database examiner, the psychologist and the CSI department.
Each agent has a share of the global knowledge, represented as fuzzy discrete
variables. This partial knowledge is related with that contained in other agents by
means of a series of constraints in which their respective variables are contained.
For example, a constraint is that the combination of the truth values of physical
and psychical analyzes is not allowed to be inferior to 0.5 (50% match with the
suspect). Also, physical analysis is considered to be more reliable than psychical
analysis and evidence is the most reliable information.

The discrete Fuzzy Prolog program modeling this problem is:

suspect(Person, V) ::~inter_m

allocate_vars([Vp, Vs, Ve]),

physically_suspect(Person, Vp, Vs),

psychically_suspect(Person, Vs, Vp),

evidences(Person, Ve, Vp, Vs).

The aggregation operator we have used is inter m that intends to reach a
consensus amongst different fuzzy agents (intersection). It returns the minimum
if consensus does not exist (i.e. intersection is void). due to its adequateness to
collaborative problems. Predicate physically suspect/3 provides the degree of
physical match, Vp, corresponding to the portrait of the Person with respect
to the database of the police file. Note the value of this variable is related to the
value of the psychical analysis by means of a constraint, being the reason why
predicate physically suspect/3 handles both variables. This is also the case in
the other predicates.

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 199

The translation of this program to CLP(FD) yields the following program:

suspect(Person, V) :-

allocate_vars([Vp, Vs, Ve]),

V in 0..10,

physically_suspect(Person, Vp, Vs),

psychically_suspect(Person, Vs, Vp),

evidences(Person, Ve, Vp, Vs),

inter_m([Vp, Vs, Ve], V).

This program produces truth values as unions of intervals of discrete val-
ues (as defined in Section 2.1) by means of distributed CLP(FD) propagation
(Section 3). It is also possible to obtain the enumeration of instantiated crisp
values instead of fuzzy values by adding a call to labeling([V p, V s, V e]), which
generates an enumeration of the variables with consistent values.

Predicate allocate vars/1 has been included to assign variables to agents.
In this case, each agent owns one variable. The agent owning a variable is the
one to propose the assignment of values to it during labeling, according to the
algorithm ABT described in [19]. In our case Vp is assigned to agent a1, Vs to
agent a2, and Ve to agent a3.

Partial knowledge stored in each agent is formulated in terms of constraint
expressions. In this case, the following represents the knowledge each agent has
about the suspect identification problem (operator @ injects this knowledge into
either agent a1, a2, or a3):

Cp: physically_suspect(Person, Vp, Vs) :-

scan_portrait_database(Person, Vp),

Vp * Vs .>=. 50 @ a1.

Cs: psychically_suspect(Person, Vs, Vp) :-

psicologist_diagnostic(Person, Vs),

Vs .<. Vp @ a2.

Ce: evidences(Person, Ve, Vp, Vs) :-

police_database(Person, Ve),

Ve .>=. Vp,

Ve .>=. Vs @ a3.

In our example each agent obtains an initial truth value for its corresponding
variable which is represented by means of the following facts:

scan_portrait_database(peter, Vp) :- Vp in 4..10.

scan_portrait_database(jane, Vp) :- Vp in 8..10.

psicologist_diagnostic(peter, Vs) :- Vs in 3..10.

psicologist_diagnostic(jane, Vs) :- Vs in 6..8.

police_database(peter, Ve) :- Ve in 7..10.

police_database(jane, Ve) :- Ve in 1..4.

In order to solve the global problem, coordination between the three agents of
the example is necessary. This coordination can be viewed at the light of message
exchange among agents, (figures 4 and 5). As seen in section 4, the distributed

200 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

fuzzy problem is solved using an evolution of ABT. The main characteristic of
this extension is that not only can it handle labeling but also propagation, hence
providing the means to obtain a fixpoint of the variables truth values. In order
to implement an effective distributed propagation scheme it is also necessary
to build a minimal spanning tree, generated according to the Dijkstra-Scholten
algorithm, that can be traversed upwards (not only downwards as in ABT) by ack
messages generated upon receipt of ok? messages in the circumstances described
in [3]. In this case the evaluation order is V p > V s > V e. ack messages contain
the store of the evaluator agent so that the agent that previously sent the ok?
can update its own store by means of executing local propagation. Upon change
in the local store the corresponding part of the ABT protocol is respawned,
submitting new ok? messages to the agent evaluators.

Cp

Ce

Cp

Cp

ok CsCp?

ok Cp?

ok Cp? ack CpCe

Cs

CpCe
ack CsCpCe

CsCp

CpCeCs

CpCeCs

ack CsCpCe

CpCeCs

CsCpCeCpCeCsCpCe CsCpCe

CpCe

T1

T4

T2 T3

T5

a1

Vp

5..9
Vs in

a1 a1

a1 a1

a2 a2 a2

a2 a2

a3 a3 a3

a3 a3

Vs Vp Vs Vp Vs

VeVeVe

Vp Vs Vp=10

Ve Ve=10

Fig. 4. Collaborative fuzzy agents interaction for suspect(peter,V)

In figure 4, agents are initially in a stable state when Cp and Ce are injected
into agents Vp and Ve, respectively. This begins a propagation process that will
eventually lead to a global fixpoint. In a given moment during T1 Vp sends
its store to its evaluator agents Vs and Ve, which will match the store of Vp
against their own. In T2, Vs sends its store to Ve, and due to a network delay
the ok? message containing it arrives earlier than Vp’s. Hence, according to the
Dijkstra-Scholten algorithm, Ve considers Vs as its parent into the spanning tree.
Thus, Ve sends an ack message containing its new store to Vp. In T3, Vp has
already updated its store with the previous message and as Ve does not have
any pending ack to receive it acknowledges its parent, Vs, with its current store.
Vs updates it stores with the content of the previous message and finally, as it
has no pending acks to receive, it acknowledges its own parent, Vp. In T5, a
global fixpoint has been reached and a consensus about Vp,Vs, and Ve has been
successfully agreed.

On the contrary, figure 5 shows a case in which the stores of agents Vp and
Ve are inconsistent. In T1, upon evaluation of the ok? sent by Vp, Ve detects
an inconsistency, overrides its store for the current problem, and, according to

Solving Collaborative Fuzzy Agents Problems with CLP(FD) 201

Cp

Ce

ok Cp?

ok Cp?

T1

Cp

T4T3

nogood

Vp Vs Vp Vs Vp Vs

VeVeVe

Cs
Cp

Cp

T2

Vp Vs

Ve

nogood

a1 a1 a1 a1a2 a2 a2 a2

a3 a3 a3 a3

Fig. 5. Collaborative fuzzy agents interaction for suspect(jane,V)

ABT, sends a nogood message to Vs, which is the agent of lower evaluation order
amongst the agents Ve evaluates. Vs does the same and propagates the nogood
to Vp, which in T4 also overrides its store and produces a failure.

6 Conclusions and Future Work

From the study of fuzzy problems we have realized that most real fuzzy models
are represented in practice with a discrete number of values. The range of values
generally depends on the accuracy required by the problem. Although a discrete
representation seems to be more limited that a continuous representation, the
implementation of fuzzy problems using constraints over finite domains has sev-
eral advantages as the possibility of modeling distributed problems with a simple
implementation. In this work, we provide the formal framework for our discrete
fuzzy Prolog, we describe the details of its implementation using CLP(FD) and
we take advantage of this implementation to solve complex distributed fuzzy
problems. We have used an extension of ABT to implement collaborative agent
systems over CLP(FD). The power of this fuzzy model and its simplicity makes
its use very interesting for taking advantage of all tools developed for finite do-
mains. We plan to continue this research with future work like studying the
impact of other tools implemented over CLP(FD) in the resolution of fuzzy
tools, and comparing efficiency of continuous Fuzzy Prolog (implemented on
CLP(R)) and discrete fuzzy tools. We also intend to improve the flexibility of
the algorithm with respect to adding or removing agents, and finally apply our
approach to fields like the semantic web or business rules to improve the dis-
tributed reasoning processes involved.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint logic program-
ming: syntax and semantics. In ACM TOPLAS, volume 23, pages 1–29, 2001.

2. K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems, 3(1):63–
75, February 1985.

3. E.W. Dijkstra and C.S. Sholten. Termination Detection for Diffusing Computa-
tions. Information Processing Letters, (11):1–4, 1980.

202 Susana Munoz-Hernandez and Jose Manuel Gomez-Perez

4. S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems, FSS, 144(1):127–150, 2004.
ISSN 0165-0114.

5. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,
P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65–85. Nova
Science, Commack, NY, USA, April 1999.

6. Michael N. Huhns and Larry M. Stephens. Multiagent Systems and Societies of
Agents. In Gerhard Weiss, editor, Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, pages 79–120. The MIT Press, Cambridge, MA,
USA, 1999.

7. J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In
Fourth International Conference on Logic Programming, pages 196–219. University
of Melbourne, MIT Press, 1987.

8. J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The clp(∇) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339–
395, 1992.

9. Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous Agents and Multi-Agent Systems, 1(1):7–
38, 1998.

10. V. Lesser, K. Decker, N. Carver, D. Neiman, M. Nagendra Prasad, and T. Wagner.
Evolution of the GPGP domain-independent coordination framework. Technical
Report UM-CS-1998-005, 1998.

11. R.C.T. Lee. Fuzzy logic and the resolution principle. Journal of the Association
for Computing Machinery, 19(1):119–129, 1972.

12. J. Medina, M. Ojeda-Aciego, and P. Votjas. Multi-adjoint logic programming with
continous semantics. In LPNMR, volume 2173 of LNCS, pages 351–364, Boston,
MA (USA), 2001. Springer-Verlag.

13. Alexander Nareyek. Constraint-Based Agents, volume 2062. Springer, 2001.
14. H. T. Nguyen and E. A. Walker. A first Course in Fuzzy Logic. Chapman &

Hall/Crc, 2000.
15. Z. Shen, L. Ding, and M. Mukaidono. Fuzzy resolution principle. In Proc. of 18th

International Symposium on Multiple-valued Logic, volume 5, 1989.
16. C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for

argumentation-based negotiation. Lecture Notes in Computer Science, 1365.
17. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

Cambridge, MA, 1989.
18. P. Vojtas. Fuzzy logic programming. Fuzzy sets and systems, 124(1):361–370, 2001.
19. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The

Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE
Transactions on Knowledge and Data Engineering, 10(5):673–685, 1998.

20. M. Yokoo. Asynchronous Weak-Commitment Search for Solving Distributed Con-
straint Satisfaction Problems. In First International Conference on Principles and
Practice of Constraint Programming, pages 88–102, 1995.

21. L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems,
1(1):3–28, 1978.

22. Ying Zhang and Alan K. Mackworth. Parallel and distributed finite constraint
satisfaction: Complexity, algorithms and experiments. Technical Report TR-92-
30, 1992.

Improved Fusion for Optimizing Generics

Artem Alimarine and Sjaak Smetsers

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

{A.Alimarine,S.Smetsers}@cs.ru.nl

Abstract. Generic programming is accepted by the functional program-
ming community as a valuable tool for program development. Several
functional languages have adopted the generic scheme of type-indexed
values. This scheme works by specialization of a generic function to a
concrete type. However, the generated code is extremely inefficient com-
pared to its hand-written counterpart. The performance penalty is so big
that the practical usefulness of generic programming is compromised. In
this paper we present an optimization algorithm that is able to com-
pletely eliminate the overhead introduced by the specialization scheme
for a large class of generic functions. The presented technique is based on
consumer–producer elimination as exploited by fusion, a standard gen-
eral purpose optimization method. We show that our algorithm is able
to optimize many practical examples of generic functions.

Keywords: program transformation, fusion, generic/polytypic program-
ming.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 203–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 205

206 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 207

208 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 209

210 Artem Alimarine and Sjaak Smetsers

5 Standard Fusion

Improved Fusion for Optimizing Generics 211

212 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 213

214 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 215

216 Artem Alimarine and Sjaak Smetsers

Improved Fusion for Optimizing Generics 217

218 Artem Alimarine and Sjaak Smetsers

The Program Inverter LRinv and Its Structure

Masahiko Kawabe1,� and Robert Glück2

1 Waseda University, Graduate School of Science and Engineering
Tokyo 169-8555, Japan
kawabe@suou.waseda.jp

2 University of Copenhagen, DIKU, Dept. of Computer Science
DK-2100 Copenhagen, Denmark

glueck@acm.org

Abstract. Program inversion is a fundamental concept in program
transformation. We describe the principles behind an automatic program
inverter, which we developed for a first-order functional language, and
show several inverse programs automatically produced by our system.
The examples belong to different application areas, including encoding
and decoding, printing and parsing, and bidirectional data conversion.
The core of the system uses a stack-based language, local inversion, and
eliminates nondeterminism by applying methods from parsing theory.

1 Introduction

The purpose of this paper is to describe a method for automatic program inver-
sion, which we developed [6, 7] for a first-order functional language, and to show
several inverse programs produced by our implementation. Many computational
problems are inverse to each other, even though we often do not consider them
from this perspective. Perhaps the most familiar example is the encoding and
decoding:

code

text text

�
�

�

encoder decoder

Two inverse programs

Here, a text is translated into a code by an encoder and then translated back
into the original text by a decoder. Usually, both programs are written by hand
with the common problem of ensuring their correctness and maintaining their
consistency. But why write both programs if one can be derived from the other
by a program inverter? Beside saving time and effort, the inverse program is
correct by construction and, if the original program is changed for any reason,
it is easy to produce a new inverse program.
� This research is supported by JSPS.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 219–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

220 Masahiko Kawabe and Robert Glück

One of the main challenges of program inversion is to derive a determinis-
tic inverse program from an injective source program. In [7], we observed that
this problem is similar to the construction of a deterministic parser if we view
the inverse program as a context-free grammar where the traces of the program
constitute its language. Determining which branch to follow in a nondetermin-
istic inverse program is like determining which production rule to apply when
constructing a parse tree. Our method makes use of this correspondence.

A program inverter is a program transformer, similar to a translator, but
instead of producing a target program that is functionally equivalent to the
source program, the source program p is transformed into a program p−1 that is
inverse to p. Inversion is a fundamental concept in mathematics, science, and en-
gineering, but has found little attention in computer science, even though many
algorithmic problems are inverse to each other, such as printing and parsing,
compilation and decompilation, and encoding and decoding.

��
�� xp−1

yp

inv

Program inverter: generating an inverse program p−1

In this paper, we introduce the main construction principles for building auto-
matic program inverters, which we identified and applied in our latest system
LRinv: (i) the design of an ‘atomic language’, (ii) local inversion of a program,
and, if possible, (iii) the elimination of nondeterminism from an inverse pro-
gram. Our present system1 is based on LR(0) parsing and represents the first
complete implementation of such an automatic program inverter. We use this
system for inverting three non-trivial examples. The examples that we selected
belong to different application areas, including encoding and decoding of data,
parsing and printing syntax trees, and the bidirectional conversion of data. The
examples show the need for our previously proposed parsing-based technique to
eliminate nondeterminism.

There are various choices when designing an automatic program inverter, and
especially when eliminating nondeterminism. This also means that they can differ
substantially in their inversion power and the quality of the inverse programs
they produce. The most promising approach that we identified [7] for eliminating
nondeterminism is to view a program as a context-free grammar and to apply
to it methods from parsing theory. We used left-factoring and a restricted form
of LL(1) parsing in [6], and a method from LR(0) parsing in in [7]. We hope
that our presentation will elucidate the main principles for building program
inverters and show their design space.

While interpreters for logic programming languages, such as Prolog, can be
used for inverse interpretation (to search for inputs for a given output), we
are interested in program inversion. Our goal is to generate stand-alone inverse

1 Home page of LRinv http://www.diku.dk/topps/inv/lr/

The Program Inverter LRinv and Its Structure 221

programs: given a program p, we want to obtain a program p−1. A good reason
for using program inversion instead of inverse interpretation is that, in general,
inverse programs are much more efficient than inverse interpreters in computing
an input x for a given output y. Our focus is on injective programs and the
generation of deterministic inverse programs. For more details regarding the
notions of inverse interpretation and program inversion, see references [1, 8].

After introducing the main concepts (Sect. 2), we present three construction
principles for building a program inverter (Sect. 3), and show inverse programs
produced by our system (Sect. 4). We next discuss related work (Sect. 5) and
finally make a conclusion (Sect. 6).

2 Fundamental Concepts

We summarize the main concepts of program inversion. We consider only pro-
grams that associate, at most, only one output to every input (injective partial
functions); we do not consider relations with multiple solutions. A program p is
injective iff, whenever p terminates on input x1 and on input x2, and produces
the same output in both cases, [[p]] x1 = [[p]] x2, it must be the case that x1 = x2.
A program inv is a program inverter, iff for all injective programs p and for all
values of x and y,

p−1 = [[inv]] p and [[p−1]] y = x ⇐⇒ [[p]] x = y .

Programs subjected to program inversion need not be total, but we assume
they are injective. The inverse of an injective program is also injective. The
following table illustrates the correspondence between injectiveness, functions
and relations:

source program inverse program
injective function 1 : 1 ⇐⇒ 1 : 1 injective function

function n : 1 ⇐⇒ 1 : n relation

A program inverter allows us to perform inverse computation in two stages. In
the first stage, the source program p is transformed into an inverse program
p−1 by the program inverter inv . In the second stage, the inverse program p−1

is evaluated with the given output y to obtain the original input x. For every
programming language, there exists a (trivial) program inverter that produces
a (trivial) inverse program for each source program. If we disregard the effi-
ciency of inverse programs, a trivial inverse program can be implemented using
a generate-and-test approach, first suggested by McCarthy [13], that searches for
the original input x given the output y. However, our goal is to generate more
efficient inverse programs.

3 Construction Principles: “How to Build an Inverter”

We now turn to the basic methods for constructing program inverters. Our aim
is to develop a program inverter for a first-order functional language. Automatic

222 Masahiko Kawabe and Robert Glück

inversion of a large class of programs is our main goal. We will use a constructor-
based, first-order functional programming language as our source language. The
language has a conventional call-by-value semantics and, for reasons of symme-
try, is extended to multiple return values: functions may return multiple values
and let-expressions can bind them to variables. We can think of input/output
values as n-ary tuples. We omit the formal definition of the functional language
due to the limited space (example programs can be seen in Figs. 3–5).

Construction Principles. Our approach to program inversion is based on
backward reading programs, i.e., in order to achieve global inversion of a pro-
gram we locally invert each of its components. This idea is not new and can
be found in [3, 9], but there, it is assumed that all programs are annotated (by
hand) with suitable postconditions, while our goal is to achieve automatic in-
version. Other approaches to program inversion exist, but most of them require
human insight and understanding (e.g., when using The Converse of a Function
Theorem [2, 14]).

We have identified three main points in the design of an automatic program
inverter. We assume that all functional programs that we consider are injective
and well-formed for inversion in the sense that they contain no dead variables
because they represent the deletion of values which, in an inverse program, need
to be guessed if no other information is available.

1. Atomization: Given a source language, design an ‘atomic language’ in
which each basic construct t has an inverse t−1 that is again a basic con-
struct in the atomic language and where the compositional constructs can
be inverted by inverting each of its components. In addition, the source lan-
guage should preferably be easy to translate to and from this new language.
The language which we designed is called grammar language.

2. Local inversion: Once the atomic language is designed, a program is in-
verted by inverting each atomic construct and their composition in the pro-
gram. The result is a correct inverse program which, in many cases, is nonde-
terministic. This means that, at some given choice point during computation,
there may be two or more alternatives that are valid. This is not a deficiency
of the transformation, but rather, the nature of program inversion when
applied to unidirectional programs.

3. Elimination of nondeterminism. Local inversion often produces a non-
deterministic inverse program. Since it is undesirable in practice to discover
the evaluation path only by trial and error, it is important to turn nondeter-
ministic programs into deterministic ones. The aim of this stage is to produce
a deterministic inverse program. Also, the elimination of nondeterminism is
necessary in order to translate inverse programs back into a deterministic
language, such as a functional language. This stage, however, is a heuristic
stage since, in general, there is no algorithm that can eliminate nondeter-
minism from any inverse program (cf. there does not exist a deterministic
parser for all context-free grammars and the fact that determinacy is an
asymmetric property of a grammar [12]).

The Program Inverter LRinv and Its Structure 223

1. Source Program

�
Translation�

�
�
�2. Grammar Program �

Local Inversion

�
�

�
�

3. Inverse
Grammar Program

�

Elimination of
Nondeterminism

5. Inverse Program

�
Translation�
�

�
�

4. Deterministic Inv.
Grammar Program

Fig. 1. Structure of the program inverter

The structure of a program inverter based on these principles is outlined in
Fig. 1: first, a source program is translated into the grammar language, then local
inversion is performed and, if possible, nondeterminism is eliminated. Finally, the
program is translated back into the original language. We shall now explain the
transformation steps with an example program that increments binary numbers.

Grammar Language. Before applying local inversion to a functional program,
we translate it to the grammar language, a stack-based language. This is our
‘atomization’ of a functional program. Each operation in the grammar language
operates on a stack: it takes its arguments from the stack and pushes the results
onto the stack. A value v is a constructor c with zero or more values as arguments:
v ::= c(v1, ..., vn). It is not difficult to translate a first-order functional program
well-formed for inversion to and from the grammar language2.

p ::= d1 . . . dm (program) a ::= c! (constructor appl.)
d ::= f → t1 . . . tm (definition) | c? (pattern matching)
t ::= a (atomic operation) | & ' (duplication/equality)
| f (function call) | π (permutation)

As an example, consider a program that increments a binary number by 1.
The functional program inc and its inverse inc−1 are shown in Fig. 2 (1, 5)3. For
example, inc(11) = 100 and inc−1(100) = 11. We require that binary numbers
have no leading zeros. In our implementation, a binary number x is represented
by an improper list containing x’s digits in reversed order. Thus, a list repre-
senting a binary number always ends with 1. For instance, the binary number
100 is represented by (0 0 . 1). The result of translating inc into the grammar
language is shown in Fig. 2 (2). A function in the grammar language is defined
by one or more sequences of operations which are evaluated from left to right.

Constructor applications and pattern matchings, which are the main opera-
tions in the grammar language, work as follows. The application c! of an n-ary
2 Operator � � has two functionalities: duplication of values, �〈v〉� = 〈v, v〉, and equal-

ity testing, �〈v, v〉� = 〈v〉 and �〈v, w〉� = 〈v, w〉 if v �= w. The operator is self-
inverse [6]. Permutation π reorders the top elements of the stack. Not essential here.

3 The enumeration in Fig. 1 corresponds to the parts in Fig. 2.

224 Masahiko Kawabe and Robert Glück

1. Source program:

inc(x) � case x of

1 → (0:1)

x1:xs → case x1 of

0 → (1:xs)

1 → let (m)=inc(xs) in (0:m)

2. Grammar program:

inc → 1? 1! 0! Cons!

inc → Cons? 0? 1! Cons!

inc → Cons? 1? inc 0! Cons!

3. Local inversion: (nondeterministic choices are marked by boxes)

inc−1 → Cons? 0? 1? 1!

inc−1 → Cons? 1? 0! Cons!

inc−1 → Cons? 0? inc−1 1! Cons!

4. Elimination of nondeterminism:

inc−1 → f0 f1 → 0? f2 f2 → 1? 1!

f0 → Cons? f1 f1 → 1? 0! Cons! f2 → Cons? f1 1! Cons!

5. Inverse program:

inc−1(x0) � case x0 of x1:x2 → let (x3)=f1(x1, x2) in (x3)

f1(x0, x1) � case x0 of

0 → case x1 of

1 → (1)

x2:x3 → let (x4)=f1(x2, x3) in (1:x4)

1 → (0:x1)

Fig. 2. Complete example: the inversion of a program for incrementing a binary number

constructor c pops n values v1, . . . , vn from the stack and pushes a new value
c(v1, . . . , vn) onto the stack. A pattern matching c? checks the topmost value
v and, if v = c(v1, . . . , vn), pops v and pushes its components v1, . . . , vn onto
the stack; otherwise it fails. For instance, when we evaluate inc(1), the initial
stack contains 1 (a nullary constructor). The pattern matching 1? in the first se-
quence succeeds and removes 1 from the stack, while pattern matchings in other

The Program Inverter LRinv and Its Structure 225

sequences fail. The constructor applications 1! and 0! in the first sequence yield
a stack with 0 and 1, from which the final value (0 . 1) is constructed by Cons!.

When a function, like inc, is applied to a stack, all sequences defining the
function are evaluated in parallel. When a pattern matching in a sequence fails,
its evaluation is stopped (e.g., when we have a value 0 and a pattern matching
1?). Since we consider only injective programs and their inverses, which are also
injective, at most, only one branch will succeed in the end, even though several
branches may be pursued in parallel. The computation is deterministic if, for
any pair of the sequences defining a function, when comparing them from left
to right, the first operations that are syntactically different are both pattern
matchings. In other words, left-factoring that extracts the common part of two
sequences leads to a choice point where all outgoing branches require pattern
matching.

A grammar program need not be deterministic. Indeed, after local inversion,
the computation of the inverse programs is generally nondeterministic. For in-
stance, this is the case for program inc−1 in Fig. 2 (3, boxed operations): after
evaluating the first two operations of the definitions of inc−1, it is not always
clear which branch should be chosen. Similarly, all grammar programs that are
left-recursive are nondeterministic. In order to give meaning to such inverse
programs, and to talk about their correctness, the semantics of the grammar
language has to be defined to allow nondeterministic computations.

Local Inversion. In a grammar program, sequences of operations are easily
inverted by reading their intended meaning backwards and replacing each oper-
ation by its inverse. Each function definition in a grammar program is inverted
individually. A useful property of the grammar language is that each term t has
exactly one term t−1 as its inverse: the inverse of a constructor application c!
is pattern matching c?, and vice versa; the inverse of & ' is & ' (the operator
is self-inverse [6]); the inverse of a permutation π is π−1, and the inverse of a
function call f is a call to f ’s inverse function f−1.

Local inversion is formally defined as follows. Given a grammar program p,
each of p’s definitions is inverted separately:

INV[[p]] = { Inv[[d]] | d ∈ p }

For a definition d in a grammar program, the sequence of terms defining function
f is reversed and each term is inverted individually:

Inv[[f → t1 . . . tn]] = f−1 → inv[[tn]] . . . inv[[t1]]

For each term t in a definition, there exists a one-to-one correspondence between
t and its inverse:

inv[[c!]] = c? inv[[f]] = f−1 inv[[& ']] = & '
inv[[c?]] = c! inv[[π]] = π−1

226 Masahiko Kawabe and Robert Glück

Local inversion does not perform unfold/fold and, thus, it terminates on all
source programs. Inverse programs produced by local inversion are correct in
the following sense: if there is a computation of a grammar program p with
input stack vs in that terminates and yields an output stack vsout, then there
is a computation of the inverse program p−1 with vsout that terminates and
yields the original input stack vs in, and vice versa. The inverse programs that
we obtain by local inversion are correct, but they are often nondeterministic
and, thus, inefficient to compute. (If the inverse program resulting from local
inversion is deterministic, then we are done with program inversion!)

Example Compare function inc before and after local inversion (Fig. 2). Each
atomic operation is inverted according to the rules above, but function inc−1 is
nondeterministic: the pattern matching 1? in the first definition and the function
call inc−1 in the third are evaluated at the same time, and at this point we cannot
see which of them succeeds. Since it is undesirable to discover successful branches
only by trial and error, it is important to turn nondeterministic programs into
deterministic ones. We should stress that local inversion can invert grammar
programs that are not injective. The result will be a nondeterministic program
from which we cannot eliminate nondeterminism (otherwise, it would imply that
the source program is injective).

The computation of inc(1) = (0 . 1) and its inverse computation can be illus-
trated by the following computation sequences operating on a stack of values.
We show the forward computation and the backward computation along the
first branch of the program inc before and after inversion (Fig. 2 (2, 3)). This
shows that we can compute the input and the output back and forth. Observe
also the correspondence of the operations in forward and backward computation
(c?↔ c!). Here, stack ε denotes the empty value stack.

Forward computation:

Backward computation:

in: 1
�1?

ε
�1!

1
�0! 0

1
�Cons!

(0.1) :out

�
�

out: 1
�1!

ε
�1?

1
�0? 0

1
�Cons?

(0.1) :in

Elimination of Nondeterminism. There are different approaches to elimi-
nating nondeterminism from an inverse program. The most promising approach
that we have identified so far is to view a program as a context-free grammar and
to apply to it methods from parser construction. In [6], we used left-factoring
and a restricted variant of LL(1) parsing, and in [7], we expanded it to methods
from LR(0) parsing, which we shall also use in the current paper. The latter
successfully inverts a large class of programs and is simpler than LR(k) methods
since it does not require a lookahead.

To apply parsing methods to our problem domain, we regard programs as
context-free grammars: an atomic operation corresponds to a terminal symbol,
a function call to a nonterminal symbol, and the definition of a function to a

The Program Inverter LRinv and Its Structure 227

grammar production. For example, we view the program in Fig. 2 as a context-
free grammar where function symbol inc−1 corresponds to a nonterminal A,
pattern matching Cons? to a terminal a, and so on.

A → abcd inc−1 → Cons? 0? 1? 1!
A → acef inc−1 → Cons? 1? 0! Cons!
A → abAdf inc−1 → Cons? 0? inc−1 1! Cons!

Because of this close correspondence between programs and context-free gram-
mars, we can operate with parsing methods on programs. The LR parsing meth-
ods are powerful deterministic bottom-up parsing methods. A principal draw-
back is that producing deterministic programs by hand can be tedious. One
needs an automatic tool, a program inverter, to perform the transformation.

Intuitively, during transformation, the LR(0) method pursues all possibilities
in parallel for as long as possible. A decision as to when to shift or reduce, and
which production to use for reduction, will only take place when necessary. This
corresponds to the subset construction when converting a nondeterministic finite
automaton (NFA) into a deterministic finite automaton (DFA).

While grammar programs have a close correspondence to context-free gram-
mars, and parsing theory is the main inspiration for eliminating nondetermin-
ism, the two are different in that grammar programs operate on a stack of values
while parsers for context-free grammars read a sequence of tokens. Another dif-
ference is that not all atomic operations in a grammar program are essential
when making a nondeterministic choice deterministic. Not all atomic operations
in the grammar language correspond directly to terminal symbols in a context-
free grammar. Only matching operations can tell us whether to continue the
computation along a branch. Moreover, we are interested in achieving a deep
compilation of the LR item sets into grammar programs. Thus, in a program
inverter, we cannot just use a conventional parser generator, such as yacc, but
need to adapt the parsing techniques to the grammar language and develop a
new way of generating programs from the collection of item sets.

Without going into further technical details—they can be found in our previ-
ous publication [7]—the result of transforming program inc−1 into a determinis-
tic program is shown in Fig. 2 (4). We found that it is essential, at this stage of in-
version, to deal with left-recursive inverse programs because they originate from
right-recursive programs which in turn are the result of translating tail-recursive
functional programs into grammar programs. For instance, left-factoring alone,
as in [6], is not sufficient to eliminate nondeterministic choices in the presence of
left-recursion. Without the possibility of dealing with left-recursive programs, we
cannot invert tail-recursive programs, which is an important class of programs.

When generating an LR parser from a collection of conflict-free LR item
sets, one usually produces a table- or procedure-driven, deterministic parser that
operates on a stack of item sets as global data structure. In contrast to these
classical parser generation methods, we want to achieve a deeper compilation
of the collection of item sets. After computing a conflict-free collection of LR

228 Masahiko Kawabe and Robert Glück

item sets, we want to generate a new grammar program, not a parser, and our
ultimate goal is to translate the grammar program into a functional program.

Much like in parser generation, there is a trade-off between the number of
item sets (which determines the size of the generated grammar programs) and the
class of nondeterministic grammar programs for which deterministic programs
can be constructed. In compiler construction, it was found that LALR(1) parsing,
though not as powerful as LR(k) parsing, is sufficient for generating deterministic
parsers for most practical programming languages, while keeping the size of the
generated parsers to a manageable size. On the one hand, it is desirable to
eliminate nondeterminism from a large class of important inverse programs; on
the other hand, the size of programs generated by an LR parsing method is a
concern. It is not entirely clear which variant of LR parsing has a reasonable
trade-off in program inversion. In future work, we want to study LR(k) methods
with lookahead in order to increase the class of invertible programs as well as
the preprocessing of grammar programs for LL(k) methods.

4 LRinv: Examples of Automatic Inversion

This section shows several inverse programs that are automatically produced by
our program inverter LRinv (see also the link in Footnote 1). The examples be-
long to three different application areas: bidirectional data conversion, encoding
and decoding, and printing and parsing. The programs are written in a first-
order functional language, which is the source language of our program inverter.
The inverter is an implementation of the inversion methods described in Sect. 3;
elimination of nondeterminism is based on LR(0) parsing. The system structure
can be seen in Fig. 1.

4.1 Bidirectional Data Conversion

A familiar example is the conversion of data from one representation into an-
other, and back. Here, we use the example of converting octal numbers into
binary numbers. Clearly, the conversion is injective and we want to be able to
convert numbers in both directions. We will see that we can write a program for
one direction by hand, for instance, octal number to binary number, and then
generate a program for the other direction automatically.

The function octbin is shown in Fig. 3: it converts an octal number into a
binary number. Here, as in the example of incrementing binary numbers (Sect. 3),
octal numbers are represented by reversed lists of octal digits ending with a non-
zero digit. For example, we write the octal number 372 as (2 7 . 3) and convert
it into a binary number by octbin((2 7 . 3)) = (0 1 0 1 1 1 1 . 1). Fig. 3 shows the
inverse program octbin−1, which was automatically produced by our system.

Local inversion, explained in Sect. 3, is sufficient to generate a deterministic
inverse program. The reason can easily be understood by examining the branches
of octbin: they have pairwise orthogonal output structures, namely (1), (0:1), ...,
(1:1:1:m). Inverting these constructor applications into pattern matchings by
local inversion is sufficient to obtain a deterministic inverse program.

The Program Inverter LRinv and Its Structure 229

Octal-to-binary converter (source program):

octbin(x) �
case x of

1 → (1); 2 → (0:1); 3 → (1:1); 4 → (0:0:1); 5 → (1:0:1); 6 → (0:1:1); 7 → (1:1:1)

x1:xs → let (m)=octbin(xs) in

case x1 of 0 → (0:0:0:m); 1 → (1:0:0:m); 2 → (0:1:0:m); 3 → (1:1:0:m)

4 → (0:0:1:m); 5 → (1:0:1:m); 6 → (0:1:1:m); 7 → (1:1:1:m)

Binary-to-octal converter (inverse program):

octbin−1(x0) � case x0 of 1 → (1)

x1:x2 → let (x3)=f3(x1, x2) in (x3)

f3(x0, x1) �
case x0 of

0 → case x1 of

1 → (2)

x2:x3 → case x2 of

0 → case x3 of

1 → (4)

x4:x5 → case x4 of

0 → case x5 of 1 → (0:1)

x6:x7 → let (x8)=f3(x6, x7) in (0:x8)

1 → case x5 of 1 → (4:1)

x6:x7 → let (x8)=f3(x6, x7) in (4:x8)

1 → case x3 of

1 → (6)

x4:x5 → case x4 of

0 → case x5 of 1 → (2:1)

x6:x7 → let (x8)=f3(x6, x7) in (2:x8)

1 → case x5 of 1 → (6:1)

x6:x7 → let (x8)=f3(x6, x7) in (6:x8)

1 → case x1 of

1 → (3)

x2:x3 → case x2 of

0 → case x3 of

1 → (5)

x4:x5 → case x4 of

0 → case x5 of 1 → (1:1)

x6:x7 → let (x8)=f3(x6, x7) in (1:x8)

1 → case x5 of 1 → (5:1)

x6:x7 → let (x8)=f3(x6, x7) in (5:x8)

1 → case x3 of

1 → (7)

x4:x5 → case x4 of

0 → case x5 of 1 → (3:1)

x6:x7 → let (x8)=f3(x6, x7) in (3:x8)

1 → case x5 of 1 → (7:1)

x6:x7 → let (x8)=f3(x6, x7) in (7:x8)

Fig. 3. Octal-to-binary converter and binary-to-octal converter

230 Masahiko Kawabe and Robert Glück

Binary tree encoder (source program):

treelist(t) � case t of L → (0:[])

B(t1, t2) → let (r1)=treelist(t1) in

let (r2)=treelist(t2) in

let (n, rs)=appendn(r1, r2) in (n:rs)

appendn(x, y) � case x of [] → (1, y)

x1:xs → let (n, z)=appendn(xs, y) in

let (z2)=id(x1:z) in

let (m)=inc(n) in (m, z2)

id(x) � (x)

Binary tree decoder (inverse program):

treelist−1(x0) � case x0 of x1:x2 → let (x3)=f1(x1, x2) in (x3)

f1(x0, x1) �
case x0 of

0 → case x1 of [] → (L)

1 → case x1 of x2:x3 → let (x4)=f1(x2, x3) in

case [] of x5:x6 → let (x7)=f1(x5, x6) in

(B(x7, x4))

x2:x3 → let (x4)=f21(x2, x3) in

case x1 of

x5:x6 → let (x7, x8)=f17(x4, x6, x5) in

case x8 of

x9:x10 → let (x11)=f1(x9, x10) in

case x7 of

x12:x13 → let (x14)=f1(x12, x13) in

(B(x14, x11))

f21(x0, x1) � case x0 of 0 → case x1 of 1 → (1)

x2:x3 → let (x4)=f21(x2, x3) in (1:x4)

1 → (0:x1)

f17(x0, x1, x2) �
case x0 of 1 → (x2:[], x1)

x3:x4 → let (x5)=f21(x3, x4) in

case x1 of x6:x7 → let (x8, x9)=f17(x5, x7, x6) in

(x2:x8, x9)

Fig. 4. Binary tree encoder and binary tree decoder

4.2 Encoding and Decoding

Another example is the lossless encoding of data. Here, we show the inversion
of a program that encodes the structure of a binary tree as a list of binary
numbers where each number indicates the number of nodes in the left subtree
of a branch. The program is shown in Fig. 4. Auxiliary function appendn ap-
pends two lists and counts the length of the first list plus one. For instance,
appendn([A], [B, C]) = ((0 . 1), [A, B, C]). Again, numbers are binary numbers
written in reversed order. An example is B(B(L, B(L, L)), L) which represents
the binary tree below (B – branch, L – leaf).

The Program Inverter LRinv and Its Structure 231

B
/ \
B L
/ \

L B
/ \
L L

The result of encoding this binary tree is (recall that these are binary
numbers with digits reversed – using decimal numbers we have as
output [6, 2, 0, 2, 0, 0, 0]):

treelist(B(B(L, B(L, L)), L)) = [(0 1 . 1), (0 . 1), 0, (0 . 1), 0, 0, 0].

The program treelist−1 that decodes such a list and returns the original binary
tree is shown in Fig. 4. It was automatically produced by the program inverter us-
ing the source program in Fig. 4. Left-factoring of the inverse grammar program
is sufficient to produce a deterministic program. Note that the source program
uses the increment function inc defined in Fig. 2 and that the inverse program
in Fig. 4 contains inc’s inverse (here, named f21). In contrast to the previous
example, not all the branches in the program treelist have different ‘patterns’.
This requires us to eliminate nondeterminism after local inversion.

4.3 Printing and Parsing

Another interesting application is printing and parsing. Here, printing means
that we produce a list of tokens from a given abstract syntax tree. Parsing means
that we read a list of tokens and create the corresponding abstract syntax tree.
The operations are inverse to each other. It is usually easier to write a program
that prints a list of tokens than to write a program that constructs an abstract
syntax tree. We will illustrate this application of program inversion by a program
that prints S-expressions, the data structure familiar from Lisp, which we will
invert to obtain a parser for S-expressions.

The function prnS shown in Fig. 5 prints S-expression. We represent nil, cons
and symbol by [], x:y, and S(x), respectively. Output is a list of tokens which
include symbols S(x), left and right parentheses L, R, and dots D. For example,
prnS (S(a):[S(b)]:S(c):S(d)) yields a list [L, S(a), L, S(b), R, S(c), D, S(d), R] which
corresponds to an S-expression (a (b) c . d). The result of program inversion
of prnS is shown in Fig. 5. Since we use methods of LR parsing to eliminate
nondeterminism, the inverse program prnS−1 works like an LR parser for S-
expressions: reading a token and calling another function corresponds to a shift
action and returning from a function corresponds to a reduce action. As with
the LR method used for parser generation, not only the power of the program
inverter, but also the size of the generated inverse program is an important
concern for the scalability of the approach. For example, it is desirable to increase
the sharing of program code (e.g., compare f12 and f30 in Fig. 5).

4.4 Other Applications
We have used the program inverter to invert a number of programs, including
a program for run-length encoding, a small expression-to-bytecode compiler, a
small printer of XML expressions, and a variety of miscellaneous functions such
as naive reverse, fast reverse, and tailcons (also known as snoc). These are not
shown here; some can be found in our previous publications [6, 7] and on the
web site (Footnote 1).

232 Masahiko Kawabe and Robert Glück

S-expression printer (source program):

prnS(s) � let (t)=pcar([], s) in (t)

pcar(t, s) � case s of S(x) → (S(x):t)

[] → (L:R:t)

x:y → let (t2)=pcdr(t, y) in let (t3)=pcar(t2, x) in (L:t3)

pcdr(t, s) � case s of S(x) → (D:S(x):R:t)

[] → (R:t)

x:y → let (t2)=pcdr(t, y) in let (t3)=pcar(t2, x) in (t3)

S-expression parser (inverse program):

prnS−1(x0) � case x0 of x1:x2 → case x1 of

S(x3) → case x2 of [] → (S(x3))

L → let (x3, x4)=f7(x2) in case x3 of [] → (x4)

f7(x0) � case x0 of

x1:x2 → case x1 of

R → (x2, [])

S(x3) → let (x4, x5)=f12(x2, S(x3)) in (x4, x5)

L → let (x3, x4)=f7(x2) in let (x5, x6)=f12(x3, x4) in (x5, x6)

f12(x0, x1) � case x0 of

x2:x3 → case x2 of

D → case x3 of

x4:x5 → case x4 of

S(x6) → case x5 of

x7:x8 → case x7 of R → (x8, x1:S(x6))

R → (x3, x1:[])

S(x4) → let (x5, x6)=f30(x3, S(x4)) in (x5, x1:x6)

L → let (x4, x5)=f7(x3) in let (x6, x7)=f30(x4, x5) in (x6, x1:x7)

f30(x0, x1) � case x0 of

x2:x3 → case x2 of

D → case x3 of

x4:x5 → case x4 of

S(x6) → case x5 of

x7:x8 → case x7 of R → (x8, x1:S(x6))

R → (x3, x1:[])

S(x4) → let (x5, x6)=f30(x3, S(x4)) in (x5, x1:x6)

L → let (x4, x5)=f7(x3) in let (x6, x7)=f30(x4, x5) in (x6, x1:x7)

Fig. 5. S-expression printer and S-expressions parser

5 Related Work

The idea of program inversion can be traced back to [3, 9] where inversion was
achieved by local inversion of imperative programs annotated by hand with pre-
and postconditions. To speedup combinatorial search programs, a form of local
inversion was used in [5] to obtain backtracking commands that undo commands.

Recent work on program inversion uses The Converse of a Function The-
orem [2, 14] and studies programmable editors based on bidirectional transfor-
mations [10] and injective languages [15]. The only automatic inverters, which

The Program Inverter LRinv and Its Structure 233

we are aware of, are described in [4, 11]. The inversion of functional programs
is related to the transformation of logic programs in that logic programs lend
themselves to bidirectional computation and reduction of nondeterminism is a
major concern [16]. An inference method for Prolog that applies an SLR pars-
ing method for building a proof tree instead of an SLD-resolution was studied
in [17].

It would be interesting to study how part of our inversion method, in partic-
ular the elimination of nondeterminism, can be utilized in the context of logic
programming. Our principles for constructing automatic program inverter which
we presented in this paper are based on two insights: the duplication/equality
operator introduced in [6] and the idea of using LR parsing for eliminating non-
determinism [7]. A different approach was taken in [8], where a self-applicable
partial evaluator was used to convert an inverse interpreter into a program in-
verter; a method described in [1].

6 Conclusion

We presented a system for inverting programs by local inversion followed by a
method to generate deterministic programs based on the observation that the
elimination of nondeterminism is similar to LR parsing. We introduced three
construction principles for building automatic program inverters, discussed their
structure, and applied our system to three non-trivial examples.

Local inversion of grammar programs turned out to be straightforward due
to the variable-free design and the use of operations that have operations as
their inverses. We should stress that local inversion is sufficient to produce cor-
rect inverse programs, even though they will often be nondeterministic. The
elimination of nondeterminism introduced as a second step after local inversion
is independent of local inversion and can be applied to any nondeterministic
program. It may well be applicable to problems outside the domain of program
inversion. We have focused on the inversion of injective programs, keeping in
mind that our goal is to invert functional programs.

A problem is that programming style matters: some programs can be in-
verted, while other functionally equivalent programs cannot. This is a common
problem for automatic program transformers and well researched in partial eval-
uation, but more work is needed for program inversion. We plan to study this
in more depth, now that we have completed the inverter system.

Among the three construction principles which we identified, local inversion is
surprisingly simple and effective, while the other two principles, atomization and
elimination of nondeterminism, allow more design choices. In the future, we want
to explore further design choices for the atomic language and examine the more
powerful LR(k) parsing methods for eliminating more forms of nondeterminism.

Acknowledgements. Thanks to Zhenjiang Hu and Shin-Cheng Mu for many
useful discussions related to inversion. Special thanks to Nils Andersen, Yoshi-
hiko Futamura, Neil D. Jones, Torben Mogensen and Jakob Simonsen for helpful
comments. We are grateful to the anonymous reviewers for their feedback.

234 Masahiko Kawabe and Robert Glück

References

1. S. M. Abramov, R. Glück. Principles of inverse computation and the universal
resolving algorithm. In T. Æ. Mogensen, D. Schmidt, I. H. Sudborough (eds.),
The Essence of Computation: Complexity, Analysis, Transformation, LNCS 2566,
269–295. Springer-Verlag, 2002.

2. R. Bird, O. de Moor. Algebra of Programming. Prentice Hall International Series
in Computer Science. Prentice Hall, 1997.

3. E. W. Dijkstra. Program inversion. In F. L. Bauer, M. Broy (eds.), Program Con-
struction: International Summer School, LNCS 69, 54–57. Springer-Verlag, 1978.

4. D. Eppstein. A heuristic approach to program inversion. In Int. Joint Conference
on Artificial Intelligence (IJCAI-85), 219–221. Morgan Kaufmann, Inc., 1985.

5. R. W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14(4):636–644,
1967.

6. R. Glück, M. Kawabe. A program inverter for a functional language with equal-
ity and constructors. In A. Ohori (ed.), Programming Languages and Systems.
Proceedings, LNCS 2895, 246–264. Springer-Verlag, 2003.

7. R. Glück, M. Kawabe. Derivation of deterministic inverse programs based on LR
parsing. In Y. Kameyama, P. J. Stuckey (eds.), Functional and Logic Programming.
Proceedings, LNCS 2998, 291–306. Springer-Verlag, 2004.

8. R. Glück, Y. Kawada, T. Hashimoto. Transforming interpreters into inverse in-
terpreters by partial evaluation. In Proceedings of the ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation, 10–19. ACM
Press, 2003.

9. D. Gries. The Science of Programming, chapter 21 Inverting Programs, 265–274.
Texts and Monographs in Computer Science. Springer-Verlag, 1981.

10. Z. Hu, S.-C. Mu, M. Takeichi. A programmable editor for developing structured
documents based on bidirectional transformations. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, 178–189. ACM Press, 2004.

11. H. Khoshnevisan, K. M. Sephton. InvX: An automatic function inverter. In N. Der-
showitz (ed.), Rewriting Techniques and Applications. Proceedings, LNCS 355, 564–
568. Springer-Verlag, 1989.

12. D. E. Knuth. On the translation of languages from left to right. Information and
Control, 8(6):607–639, 1965.

13. J. McCarthy. The inversion of functions defined by Turing machines. In C. E.
Shannon, J. McCarthy (eds.), Automata Studies, 177–181. Princeton University
Press, 1956.

14. S.-C. Mu, R. Bird. Inverting functions as folds. In E. A. Boiten, B. Möller
(eds.), Mathematics of Program Construction. Proceedings, LNCS 2386, 209–232.
Springer-Verlag, 2002.

15. S.-C. Mu, Z. Hu, M. Takeichi. An injective language for reversible computation. In
D. Kozen (ed.), Mathematics of Program Construction. Proceedings, LNCS 3125,
289–313. Springer-Verlag, 2004.

16. A. Pettorossi, M. Proietti, S. Renault. Reducing nondeterminism while special-
izing logic programs. In Proceedings of the Twenty Fourth ACM Symposium on
Principles of Programming Languages, 414–427. ACM Press, 1997.

17. D. A. Rosenblueth, J. C. Peralta. SLR inference an inference system for fixed-mode
logic programs based on SLR parsing. Journal of Logic Programming, 34(3):227–
259, 1998.

A Full Pattern-Based Paradigm
for XML Query Processing

Véronique Benzaken1, Giuseppe Castagna2, and Cédric Miachon2

1 LRI, UMR 8623, C.N.R.S., Université Paris-Sud, Orsay, France
2 C.N.R.S., Département d’Informatique, École Normale Supérieure, Paris, France

Abstract. In this article we investigate a novel execution paradigm – ML-like
pattern-matching – for XML query processing. We show that such a paradigm
is well adapted for a common and frequent set of queries and advocate that it
constitutes a candidate for efficient execution of XML queries far better than
the current XPath-based query mechanisms. We support our claim by comparing
performances of XPath-based queries with pattern based ones, and by comparing
the latter with the two efficiency-best XQuery processor we are aware of.

1 Introduction, Motivations, and Goals

In this article we investigate a novel execution paradigm – namely ML-like pattern-
matching – for XML query processing. We show that such a paradigm is well adapted
for a common and frequent set of queries and thus could be used as a compilation
target for XQuery. More precisely, to do so, we endow the pattern-matching based lan-
guage CDuce with an SQL-like query language that we introduce in this article and dub
CQL. CDuce [4, 20] (pronounce “seduce”) is a strongly and statically typed pattern-
based higher-order functional programming language for XML. It is standard compliant
(XML, Namespaces, Unicode, XML Schema validation, DTD, etc.) and fully operative
and implemented (the distribution of CDuce/CQL is available at www.cduce.org). One
of the distinguishing characteristics of CDuce is its pattern algebra. CDuce inherits and
extends XDuce [21] pattern algebra and implements it by a very efficient “just in time”
compilation [19]. CQL is a query language in which queries are written using pat-
terns (in the sense of CDuce patterns) and where the execution mechanism is based on
pattern-matching (in the sense of ML-like languages). CQL/CDuce patterns are more
similar to ML patterns than to XPath expressions. With respect to XPath expressions,
CDuce patterns are far more declarative inasmuch as while the former strictly indicate
navigation paths, the latter reflect the whole structure of matched values and they can
be composed by applying boolean combinators.

To demonstrate that pattern-matching is relevant for query compilation and evalu-
ation in the XQuery context, we also introduce, for free, some syntactic sugar to yield
an XQuery-like programming style. We call this extension CQLX . We chose to ex-
periment with CQLX as we wanted to fully exploit the already implemented CDuce’s
pattern compilation schema and runtime support rather than re-implementing it in the
context of XQuery.

Several proposals for defining query languages for XML have been made [2, 6, 14,
15] and a comparative study can be found in [1]. Among them we choose to briefly

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 235–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

recall the main features of XQuery[15] as (one of) our purpose is to show that the
experiments performed with CQL apply obviously to it.

XQuery [15, 17] is becoming the W3C standard in terms of query languages. An
earlier proposal was Quilt [11], which borrowed many functionality from XPath [13],
XQL [23], XML-QL [16], SQL, and OQL. XQuery is a strongly and statically typed
functional language whose type system was largely inspired by XDuce [21].

<books-with-prices>
{ for $b in $biblio//book,

$a in $amazon//entry
where $b/title = $a/title
return

<book-with-prices>
{ $b/title }

<price-amazon>{$a/price/text() }
</price-amazon>
<price-bn>

{ $b/price/text() }
</price-bn>

</book-with-prices> }
</books-with-prices>

A query is expressed by a FLWR expression: for (it-
eration on a set of nodes), let (variables binding),
where (filter the elements according to a condition),
and return (construct the result for each node satis-
fying the where clause) The query on the side is an
example of FLWR expression (it is the Q5 query of
the XML Query Use Cases). Pattern expressions in
XQuery, such as $amazon//entry or $a/price/text(),
are based on XPath [13]. Many works among
them [12] attempts to optimise XQuery evaluation.

The immanent purpose of this article is to investigate whether pattern-matching à la
CDuce is well adapted for main memory XML query processing. The answer is posi-
tive and CDuce’s patterns and pattern-matching mechanism can serve as an execution
mechanism for XQuery. Indeed, the need for efficient main memory query processing
is still of crucial interest. As pointed out by many works a bunch of application sce-
narios such as message passing, online processing do not manipulate huge documents.
We advocate that CDuce patterns are a better candidate for XML patterns (again in the
sense of [10]) than path expressions. We base our plea on the following observations:

1. CDuce patterns are more declarative: different patterns can be combined by boolean
combinators, thus, in a declarative way. Furthermore, they can represent the whole
structure of matched values. This allows the capture of larger quantities of infor-
mation in a single match.

2. CDuce patterns are more efficient: our measurements show that a query written in
CQLX using the navigational style is always slower (sometimes even after some
optimisation) than the same query written in CQL (even when the latter is ob-
tained from the former by an automatic translation). Of course this claim must be
counterbalanced by the fact that our comparison takes place in CDuce, a language
whose implementation was specifically designed for efficient pattern matching res-
olution. Nevertheless we believe that this holds true also in other settings: the fact
that CDuce patterns can capture the whole structure of a matched value (compared
with paths that can capture only a subpart of it) makes it possible to collect phys-
ically distant data in a single match, avoiding in this way further search iterations.
To put it simply, while a path expression pinpoints in a tree only subtrees that all
share a common property (such as having the same tag) a CDuce pattern does more
as it can also simultaneously capture several unrelated subtrees.

Our claim is supported by benchmark results. We performed our experiments in CDuce
rather than XQuery since this is of immediate set up: XPath/XQuery patterns are im-
plemented in CDuce as simple syntactic sugar, while an efficient integration of CDuce
patterns in XQuery would have demanded a complete rewriting of the runtime of a

A Full Pattern-Based Paradigm for XML Query Processing 237

XQuery processor (but, again, we think that this is the way to go). So instead of com-
paring results between standard XQuery and a version of XQuery enriched with CDuce
patterns, we rather compare the results between CQL (the standard CDuce query lan-
guage) and CQLX (that is CQL in which we only use XQuery patterns and no CDuce
pattern).

Furthermore, in order not to bias the results with implementation issues, in all our
experiments with CQLX we avoided, when this was possible1, the use of “//” (even
if the “//”-operator is available in CDuce): whenever in our tests we met a (XQuery)
query that used “//” (e.g. the query earlier in this section) we always implemented it
by translating (by hand) every occurrence of “//” into a minimal number of “/”. Such a
solution clearly is much more efficient (we program by hand a minimal number of “/”
searches instead of using “//” that performs a complete search on the XML tree) and
does not depend on how “//” is implemented in CDuce (in CDuce “//” is implemented
by a recursive function whose execution is much less optimised than that of “/” which,
instead, enjoys all the optimisations of the CDuce runtime). Therefore it is important to
stress that in this article we are comparing hand-optimised XQuery patterns in CQLX

with automatically generated (therefore not very optimised) CDuce patterns in CQL:
the results of our tests, which always give the advantage to the second, are thus very
strong and robust.

The existence of an automatic translation from (a subset of) XPath patterns to
CDuce ones, is a central result of our work. This work demonstrates that XPath-like
projections are redundant and in a certain sense, with respect to patterns, problematic
as they induce a level of query nesting which penalises the overall execution perfor-
mance. We thus defined a formal translation of CQLX to CQL and showed that it pre-
serves typing. This translation maps every CQLX query into a (flat) CQL one (i.e., with
all nesting levels induced by projections removed), and is automatically implemented
by the CDuce/CQL compiler. Not only such a translation is useful from a theoretical
point of view, but (i) it accounts for optimising queries and (ii) shows that the approach
can be applied both to standard XQuery (in which case the translation would be used
to compile XQuery into a pattern aware runtime) and to a conservative extension of
XQuery enriched with CDuce patterns (in which case the translation would optimise
the code by a source to source translation, as we do for CQL(X)). Whatever in CDuce
or in XQuery this transformation allows the programmer to use the preferred style since
the more efficient pattern-based code will be always executed. We also adapt logical op-
timisation techniques which are classical in the database field to the context of pattern
based queries and show through performance measurement that they are relevant also
in this setting.

To further validate the feasibility of pattern-matching as an execution model we also
compared CQL performances with those of XQuery processors. Since our language is
evaluated in main memory (we do not have any persistent store, yet) as a first choice we
compared CQL performance with Galax [3] that besides being a reference implementa-
tion of XQuery, uses the same technologies as CDuce (noticeably, it is implemented in
OCaml). However, the primary goal of Galax is compliance with standards rather than

1 Of course there exist types (such as t = <a>[t | []]) and queries (//<a>) for which such a
translation is not possible.

238 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

efficiency and for the time being the (web) available version does not implement any
real optimisation and has poor memory management (even if [22] proposes some im-
provements), which explains that CQL outperformed Galax (of an order of magnitude
up to tens of thousands of time faster). Therefore we decided to run a second series of
tests against Qizx [18] and Qexo [7], the two efficiency best XQuery implementations
we are aware of. The tests were performed on the first five XML Query Use Cases [9]
and on queries Q1, Q8, Q12, and Q16 of the XMark benchmark [24]. This set of tests
gave a first positive answer to practical feasibility of CQL-pattern matching. We were
pleased to notice that CQL was on the average noticeably faster than Qizx and Qexo
especially when computing intensive queries such as joins2 (cf. Q4 and Q5 use cases in
Section 4 and query Q8 and Q12 of XMark). These results are even astounding if we
consider that while Qizx and Qexo are compiled into bytecode and run on mature and
highly optimised Java Virtual Machines (that of course we parametrised to obtain the
best possible results), CDuce essentially is an interpreted language (it produces some
intermediate code just to solve accesses to the heap) with just-in-time compilation of
pattern matching. In the “todo” list of CDuce a high priority place is taken by the com-
pilation of CDuce into OCaml bytecode. We are eager to redo our tests in such a setting,
which would constitute a more fair comparison with the Java bytecode and should fur-
ther increase the advantage of the CQL execution model.

Outline. The article is organised as follows. In Section 2 we briefly recall CDuce fea-
tures which are useful for understanding the definition of CQL: types, expressions and
patterns. In Section 3 we present CQL’s syntax and semantics. We give the typing rules
for the defined language. We then present CQLX showing how to define projections.
We formally define the translation from CQLX to CQL and show that such a translation
yields an unnested CQL query and preserves typing. In Section 4 we propose several op-
timisations and in Section 5 we report on performance measurements we did. We draw
our conclusions and present our current and future research directions in Section 6.

2 Types, Expressions and Patterns

A CQL query is written as

select e0 from p1 in e1, p2 in e2,. . . ,pn in en where c

where the pi’s and ei’s respectively denote CDuce patterns and expressions. To define
CQL then we have to define CDuce patterns and (a minimal subset of) expressions.
A complete presentation of CDuce is beyond the scope of this paper (see instead the
documentation – tutorial and user manual – and do try the prototype available at www.
cduce.org), therefore we present here only (a subset of) CDuce values and just one
complex expression, transform, used to define the semantics of CQL queries.

Since in CDuce/CQL patterns are types with capture variables let us start our pre-
sentation with them.

2 We would like the reader to notice that we did not perform any further optimisation relying
on specific data structure such as hash tables. Our very purpose was to assess CDuce pattern
matching as an execution primitive for XML query processing in which XQuery could be
compiled.

A Full Pattern-Based Paradigm for XML Query Processing 239

2.1 Types

CDuce type algebra includes three family of scalar types: (i) Integers, that are classified
either by the type identifier Int, or by interval types i - - j (where i and j are integer literals),
or by single integer literals like 42 that denotes the singleton type containing the integer
42. (ii) Characters, classified by the type identifiers Char (the Unicode character set)
and Byte (the Latin1 character set), by intervals c - - d (where c and d are Character
literals that is single quoted characters like ’a’, ’b’, . . . , or backslash-escaped directives
for special characters, Unicode characters, . . .), or by single character literals denoting
the corresponding singleton types. (iii) Atoms that are user defined constants; they are
CDuce identifiers escaped by a back-quote such as ‘nil, ‘true, . . . and are ranged over by
the type identifier Atom or by singleton types.

The other types of CDuce’s type algebra are (possibly recursively) defined from the
previous scalar types and the types Any and Empty (denoting respectively the universal
and empty type) by the application of type constructors and type combinators.

Type combinators. CDuce has a complete set of Boolean combinators. Thus if t1 and
t2 are types, then t1& t2 is their intersection type, t1 ||| t2 their union, and t1\\\ t2 their
difference. For instance the type Bool is defined in CDuce as the union of the two
singleton types containing the atoms true and false, that is ‘true | ‘false.

Type constructors. CDuce has type constructors for record types { a1 = t1;. . . ;an = tn },
product types (t1,t2), and functional types (t1–>t2). For this paper the most interesting
constructors are those for sequences and XML.

Sequence types are denoted by square brackets enclosing a regular expression on
types. For instance, in CDuce strings are possibly empty sequences of characters of
arbitrary length, and thus String is defined and implemented as [Char∗] (i.e. it is just
a handy shortcut). The previous type shows that the content of a sequence type can be
conveniently expressed by regular expressions on types, which use standard syntax3:

R ::= t | R R | R|R | R∗ | R+ | R?
The general form of an XML type is < t1 t2 > t3 with ti’s arbitrary types. In practise t1 is
always a singleton type containing the atom of the tag, t2 is a record type (of attributes),
and t3 a sequence type (of elements). As a syntactic facility it is possible to omit the
back-quote in the atom of t1 and the curly braces and semicolons in t2, so that XML
types are usually written in the following form: <tag a1=t1 a2=t2 . . . an=tn>[R].

In the first row Figure 1 we report a DTD for bibliographies followed by the corre-
sponding CDuce types: note the use of regular expression types to define the sequence
types of elements (PCDATA is yet another CDuce convention to denote the regular ex-
pression Char*).

2.2 Expressions and Patterns

Expression constructors mostly follow the same syntax as their corresponding type con-
structors, so a record expression has the form { a1 =e1;. . . ;an =en }, while a pair expres-
sion is (e1,e2). The same conventions on XML types apply to XML expressions: instead

3 These are just a very convenient syntactic sugar (very XML-oriented) for particular recursive
types.

240 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

XML CDuce

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+),

publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

CDuce Types:

type Bib = <bib>[Book*]
type Book = <book year=String>[Title

(Author+ | Editor+) Publisher Price]
type Author = <author>[Last First]
type Editor = <editor>[Last First Affiliation]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Affiliation = <affiliation>[PCDATA]
type Publisher = <publisher>[PCDATA]
type Price = <price>[PCDATA]

<?xml version="1.0"?>
<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>Richard</first>

</author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>

</book>
<book year="1984">

<title>The Lambda Calculus</title>
<author>

<last>Barendegt</last>
<first>Henk</first>

</author>
<publisher>North-Holland</publisher>
<price>92.00</price>

</book>
</bib>

<bib>[
<book year="1994">[

<title>"TCP/IP Illustrated"
<author>[

<last>"Stevens"
<first>"Richard"

]
<publisher>"Addison-Wesley"
<price>"65.95"

]
<book year="1984">[

<title>"The Lambda Calculus"
<author>[

<last>"Barendegt"
<first>"Henk"

]
<publisher>"North-Holland"
<price>"92.00"

]
]

Fig. 1. DTD/CDuce-types and document/values for bibliographies

of writing <‘book {year="1990"}>[. . .] we rather write <book year="1990">[. . .]. In the
second row of Figure 1 we report on the left a document validating the DTD of the
first row and on the right the corresponding (well-typed) value in CDuce: note that
strings are not enclosed in brackets since they already denote sequences (of characters).
Besides expression constructors there are also function definitions and operators (ex-
pression destructors). For the purpose of this article we are particularly interested in
operators that work on sequences. Besides some standard operators, the most impor-
tant operator for processing XML data (and the only CDuce iterator we present here) is
transform, whose syntax is:

transform e with p1 -> e1 | p2 -> e2 | . . . | pn -> en

with n ≥ 1 and where e, e1, e2, . . . , en are (expressions that return) sequences and p1,
p2, . . . , pn are patterns whose semantics is explained below.

The expression above scans the sequence e and matches each element of e against
the patterns, following a first match policy (that is, first against p1 then, only if it fails,
against p2, and so on). If some pi matches, then the corresponding ei is evaluated in an
environment where variables are substituted by the values captured by the pattern. If no

A Full Pattern-Based Paradigm for XML Query Processing 241

pattern matches, then the empty sequence is returned. When all the elements of e have
been scanned, transform returns the concatenation of all results4.

Clearly, in order to fully understand the semantics of transform we need to explain
the semantics of patterns. The simplest patterns are variables and types: a variable pat-
tern, say, x always succeeds and captures in x the value it is matched against. If e is a
sequence of integers then transform e with x -> (if x>=0 then [x] else []) returns the sub-
sequence of e containing all the positive integers. A type pattern t instead succeeds only
when matched against a value of type t. More complex patterns can be constructed by
using type constructors and/or the combinators “&” and “|”. So p1&p2 succeeds only if
both p1 and p2 succeed (p1 and p2 must have pairwise distinct capture variables), while
p1|p2 succeeds if p1 succeeds or p1 fails and p2 succeeds (p1 and p2 must have the
same set of capture variables). For instance the pattern x&Int succeeds only if matched
against an integer, and in that case the integer at issue is bound to x. Since the type of
positive integers can be expressed by the interval 0- -∗ (in integer intervals ∗ stands for
infinity) then the previous transformation can be also written as transform e with x&(0- -
∗) -> [x] . We can use more alternatives to transform the negative elements into positive
ones instead of discarding them: transform e with x&(0- -∗) -> [x] | x&(∗- -0) -> [-x].

If we know that e is a sequence formed only of integers, then in the expression above
we can omit “&(∗- -0)” from the second pattern as it constitutes redundant information
(actually CDuce automatically gets rid at compile time of all redundant information).

Patterns built by type constructors are equally simple. For instance, the pattern
<book year=y>[<title>t <author>[_ f] ;_] matches any bibliographic entry bind-
ing to y the value of the attribute year, to t the string of the title, and to f the <first>
element of the first author name. The wildcard _ is often used in patterns as a shorthand
for the type Any (it matches any value, in the case above it matches the <last> element
in the name) while “;_” matches tails of sequences.

Assuming that books denotes a variable of type [Book∗] the code below:

transform books with
| <book year=("1999"|"2000")>[_ <author>[_ <first> f] ;_] -> [f]
| <_>[_ <author>[<last>s ;_] ;_] -> [s]

scans the sequence of elements of books and for each book it returns the string of the
first name if the book was published in 1999 or 2000, or the string of the last name
otherwise.

Besides variables and types there are two (last) more building blocks for patterns:
default patterns and sequence capture variables.

Default patterns are of the form (x:=v); the pattern always succeeds and binds x to
the value v. Default patterns are useful in the last position of an alternative pattern in
order to assign a default value to capture variables that did not match in the preceding
alternatives. This allows the programmer to assign default values to optional elements
or attributes. For instance imagine that we want to change the previous transform so that
if the publication year is not 1999 or 2000 it returns the last name of the second author
element if it exists, or the string "none" otherwise. It will be changed to:

4 In short, transform differs from the classic map (also present in CDuce) since it uses pattens to
filter elements of a sequence and therefore, contrary to map it does not preserve the length of
the sequence.

242 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

transform books with
| <book year=("1999"|"2000")>[_ <author>[_ <first> f] ;_] -> [f]
| <_>[_ Author <author>[<last>s _] ;_] | (s:="none") -> [s]

We guarded the second branch by an alternative pattern assigning "none" to s when the
first pattern fails (that is, when there is no second author). Note that the string "none" is
returned also when the book has editors instead of authors (see the definition of Book
type in Figure 1). To filter out books with only editors, the pattern of the second branch
should be <_>[_ (Author (<author>[<last>s _] | (s:="none")) ;_]. The pattern succeeds
if and only if the title is followed by an author, in which case either it is followed by a
second author (whose lastname is then captured by s), or by a publisher (and s is then
bound to "none").

Sequence capture variables patterns are of the form x::R where R is a type regular
expression; the pattern binds x to a sequence of elements. More precisely it binds x to the
sequence of all elements matching R (regular expressions match sequences of elements
rather than single elements). Such patterns are useful to capture whole subsequences
of a sequence. For instance, to return for each book in the bibliography the list of all
authors and to enclose it in a <authors> tag can be done compactly as follows:

transform books with <book>[_ (a::Author+) ;_] -> [<authors>a]

Note the difference between [x::Int] and [(x & Int)]. Both accept sequences formed of
a single integer, but the first one binds x to a sequence (of a single integer), whereas the
second one binds it to the integer itself.

Finally we want to stress that the type inference algorithm of CDuce/CQL is better
than that of XQuery since it always infer a type more precise than the one inferred by
XQuery. An example can be found in the extended version of this paper [5].

3 CQL: A Pattern-Based Query Language for XML Processing

The formal syntax of CQL is given by the following grammar:
Queries

q::=select e from f where c | select e from f

Bindings
f ::=p in e , f | p in e

Conditions
c::=‘‘‘true | ‘‘‘false | not(c) | c or c | c and c | member(e , e) | e bop e

Expressions
e::=x | v | [e . . . e] | flatten(e) | q | 〈〈〈 e � = e . . . � = e 〉〉〉 e | op(e)

Patterns
p::=x | t | p&&&p | p ||| p | (p,p) | 〈〈〈 p � = p . . . � = p 〉〉〉 p | [[[r]]] | (x:=v)

Pattern regular expressions
r::=p | (x :::::: r) | r ||| r | r r | r+ | r∗ | r?

Types
t::=B | t ||| t | t &&&t | t \\\ t | 〈〈〈 t � = t . . . � = t 〉〉〉 t | [[[R]]] | Empty | Any

where op ranges over sequence operators (op∈{distinct_values, count, avg, max, min,
sum}), bop over boolean relations (bop∈{=, >>, >=, <<, <=}), x over variables, and v

A Full Pattern-Based Paradigm for XML Query Processing 243

(var(pi)∧var(pj)=∅, for i�= j)

Γ,(t1/p1), . . . ,(ti−1/pi−1) � ei : [ti+] Γ,(t1/p1), . . . ,(tn/pn) � e : t, c : Bool

Γ � select e from p1 in e1, . . . ,pn in en where c : [t∗]
(select)

Fig. 2. Typing rule for queries

over values (viz. closed expressions in normal formal and constants for integers and
characters); flatten takes a sequence of sequences and returns their concatenation (thus,
for instance, the infix operator @ that denotes the concatenation of two sequences is
encoded as e1@e2 = flatten [e1 e2]).

The non-terminal R used in the definition of types is the one defined in Section 2.1.
Patterns, ranged over by p, and types, ranged over by t, are simplified versions of those
present in CDuce and have already been described; note that types include full boolean
combinations: intersection (t &&&t), union (t ||| t), and difference (t \\\ t). The reader can
refer to [4] for a more detailed and complete presentation.

<books-with-prices>
select <book-with-price>[t1

<price-amazon>p2
<price-bn>p1]

from <bib>[b::Book*] in [biblio],
<book>[t1&Title _* <price>p1] in b,
<reviews>[e::Entry*] in [amazon],
<entry>[t2&Title <price>p2 ;_] in e

where t1=t2

As an example, the query Q5 of XQuery de-
scribed in the introduction would be written in
CQL as shown on the left-hand side.

The typing rule for the select-from-where
construction is given in Figure 2. It states that the
condition c must be of type Bool and that the ei’s
must be non-empty homogeneous sequences. In

this rule (t/p) is the type environment that assigns to the variables of p the best type
deduced when matching p against a value of type t and var(p) is the set of variables
occurring in p 5 (see [4] for formal definitions and the optimality of the deduced types).

transform e1 with p1 –>
transform e2 with p2 –>

. . .
transform en with pn –>

if c then [e0] else []

The semantics of a select-from-where expression
(in the form as it is at the beginning of Section 3)
is defined in terms of the translation into CDuce
given on the left-hand side. In our context trans-
form plays exactly the same role as the “for” con-
struct of XQuery core does [17]. However, the

peculiar difference is that our pattern matching compilation schema is based on non-
uniform tree automata which fully exploit types to optimise the code [19] as well as its
execution. This translation is given only to define in an unambiguous way the semantics
of the new term. It is not intended to impose any execution order, since such a choice is
left to the query optimiser. In fact the optimiser can implement this more efficiently; for
instance, if c does not involve the capture variables of some pi, the query optimiser can,
as customary in databases, push selections (and/or projections) on some components as
shown in Section 4.

3.1 CQLX

In order to investigate and compare pattern-matching with XQuery, we have extended
CQL with projection operators à la XPath. Let e, be an expression denoting a sequence

5 The condition var(pi)∧ var(p j) = ∅ for i �= j is not strictly necessary but may be useful in
practise and simplifies both the proofs and the definition of the optimisations.

244 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

XQuery:

<bib>
{
for $b in $biblio/bib/book
where $b/publisher = "Addison-Wesley"

and $b/@year > 1990
return
<book year="{ $b/@year }">
{ $b/title }

</book>
}
</bib>

CQLX :

<bib> select <book year=y>[t]
from b in [biblio]/<book>_ ,

p in [b]/<publisher>_ ,
t in [b]/<title>_ ,
y in [b]/@year

where (p = <publisher>"Addison-Wesley")
and (y>>"1990"));;

CQL:

<bib> select <book year=y>[t]
from <bib>[b::Book*] in [biblio],

<book year=y>[t&Title _+
<publisher>"Addison-Wesley";_] in b;;

where y>>"1990"

Fig. 3. XQuery and the two CQL programming styles

of XML elements, and t be a CDuce type, then e///t denotes the set of children of the ele-
ments in e whose type is t. The formal semantics is defined by encoding: e///t is encoded
as transform e with <_>[(x:: t | _)∗] –> x. It is convenient to introduce the syntax e///@a
to extract the sequence of all values bound to the attribute a of elements in e, which is
encoded in CDuce as transform e with <_ a=x>_ –> [x].

Figure 3 illustrates how to code the same query in XQuery, CQLX , and CQL. The
query at issue is the query Q1 from the XQuery Use Cases. While XQuery and CQLX

code make use of simple variables that are bound to the results of projections, the CQL
one fully exploits the pattern algebra of CDuce (we leave as an exercise to the reader
how to use regular expressions on types to modify the pattern in the second from clause
of the CQL query so as to completely get rid of the where clause).

Finally, since we use CQLX to mimic XQuery in a full pattern setting, it is important
to stress that the semantics of where clauses in CQL (hence in CQLX) is not exactly the
same as in XQuery. The latter uses a set semantics according to which a value satisfying
the where close will occur at most once in the result (e.g. as for SELECT DISTINCT of
SQL), while CQL/CQLX follow the SQL convention and use a multi-set semantics.
As usual, the multi-set semantics is more general since the existential semantics can
easily obtained by using the distinct_values operator (which takes a sequence and elides
multiple occurrences of the same element). The presence of such an operator has no
impact on the translation from CQLX to CQL.

3.2 Translation from CQLX to CQL

It is quite easy to see that projections can be encoded in CQL, since the two transform
expressions used to encode projections correspond, respectively, to: flatten(select x
from <_>[(x:: t | _)∗] in e), and to select x from <_ a=x>_ in e. Nonetheless
it is interesting to define a more complex translation from CQLX to CQL that fully
exploits the power of CDuce patterns to optimise the code. Therefore in this section we
formally define a translation that aims at (i) eliminating projections and pushing them
into patterns (ii) transforming as many as possible selection conditions into patterns.

A Full Pattern-Based Paradigm for XML Query Processing 245

As a result of this translation the number of iterations is reduced and several where
clauses are pushed into patterns. In order to formally define the translation we first need
to introduce the expression and evaluation contexts E⎨ ⎬ and C⎨ ⎬:

q̄ ::= select ē from f̄ where c̄ | select ē from f̄

ē ::= x | v | [ē. . . ē] | flatten(ē) | ē〈〈〈 � =ē. . . � =ē 〉〉〉 ē | (ē,ē) | op(ē) | q̄

f̄ ::= p in ē, f̄ | p in ē

c̄ ::= ‘true | ‘false | not(c̄) | c̄ or c̄ | c̄ and c̄ | ē bop ē | member(ē,ē)

E⎨⎬ ::= ⎨ ⎬ | [e1 . . .en E⎨⎬ ē1 . . . ēm] | flatten(E⎨⎬) | 〈〈〈 ē � = e . . . � = e 〉〉〉 E⎨⎬
| 〈〈〈 ē � = e . . . � =E⎨⎬ � =ē . . .〉〉〉 ē | (E⎨⎬,ē) | E⎨⎬/t | E⎨⎬/@a | op(E⎨⎬)

C⎨ ⎬ ::= ⎨ ⎬ | not(C⎨⎬) | c or C⎨⎬ | C⎨⎬ or c̄ | c and C⎨⎬ | C⎨⎬ and c̄
| e bop E⎨⎬ | E⎨⎬ bop ē | member(e,E⎨⎬) | member(E⎨⎬,ē)

where m,n≥ 0.

Definition 1. The translation P � � is defined by the following rewriting rules:
- P � select E⎨q⎬ from f where c � = P � select E⎨P � q �⎬ from f where c �, q is not a q̄ expression
- P � select E⎨ē/t⎬ from f where c � = P � select E⎨x⎬ from f , x in [ē/t] where c �, x /∈ bv(f)
- P � select E⎨ē/@a⎬ from f where c � = P � select E⎨x⎬ from f , x in [ē/@a] where c �, x /∈ bv(f)
- P � select ē from f where C⎨q⎬ � = P � select ē from f where C⎨P � q �⎬ �, q is not a q̄ expression
- P � select ē0 from f where C⎨ē/t⎬ � = P � select ē0 from f , x in [ē/t] where C⎨x⎬ �, x /∈ bv(f)
- P �select ē0 from f where C⎨ē/@a⎬� = P � select ē0 from f,x in [ē/@a] where C⎨[x]⎬ �, x /∈bv(f)
- P � select ē from f where c̄ � = P � select ē from F � f �bv(f) where c̄ �

where F � � is defined as:

- F � p in e, f �Γ = F � p in e �Γ, F � f �Γ∪bv(F �p in e�Γ)

- F � p in E⎨q⎬ �Γ = F � p in E⎨P � q �⎬ �Γ
- F � p in E⎨ē/t⎬ �Γ = if ē has type [Any] then <_>[(x::t |_)*] in ē, F � p in E⎨x⎬ �Γ∪{x}, x /∈ Γ

else [(<_>[(x::t |_)∗] | x::‘nil)∗] in [ē], F � p in E⎨flatten(x)⎬ �Γ∪{x}, x /∈ Γ
- F � p in E⎨ē/@a⎬ �Γ = if ē has type [Any] then <_ a=x>_ in ē, F � p in E⎨[x]⎬ �Γ∪{x}, x /∈ Γ

else [(<_ a=x>_ | x::‘nil)∗] in [ē], F � p in E⎨x⎬ �Γ∪{x}, x /∈ Γ
- F � p in ē �Γ = p in ē

Apart from technical details, the translation is rather simple: contexts are defined so that
projections are replaced according to an innermost-rightmost strategy. For instance if
we have to translate x/t1/t2, (x/t1) will be considered first thus removing the projection
on t1 prior to performing the same translation on the remainder. The first three rules
replace projections in the select part, 2nd and 3rd rules incidentally perform a slight
optimisation (they get rid of one level of sequence nesting) in the case the projection is
applied to a sequence with just one element (this case is very common and dealing with
it allows for further optimisation later on); the 4th, 5th, and 6th rules replace projections
in the “where” part by defining new patterns in the “from” part, while the 7th rule
handles projections in the “from” part. The latter resorts to an auxiliary function F that
needs to store in a set Γ the capture variables freshly introduced.

So far, we have proved just a partial correctness property of the translation, namely
that it preserves the types (the proof is omitted for space reasons):

246 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

Theorem 1 (Type preservation). Γ � q : t⇒ Γ � P � q � : t

The result of P is a query in CQL since all projections have been removed. From a prac-
tical viewpoint, the use of a projection in a query is equivalent to that of a nested query.
<bib>
select <book year=y>[t]
from b in (select v from <_>[(yb::Book| _)*] in [biblio], v in yb)

p in (select v from <_>[(yp::Publisher| _)*] in [b], v in yp)
t in (select v from <_>[(yt::Title| _)*] in [b], v in yt)
y in (select yy from <_year=yy>_ in [b])

where (p = <publisher>"Addison-Wesley") and (y>>"1990")

Let Q be the query obtained
from the CQLX query in Fig-
ure 3 by replacing <book>_,
<publisher>_, and <title>_ re-
spectively by Book, Pub-

lisher, and Title (the resulting query is semantically equivalent but more readable and
compact). If we expand the projections of Q into its corresponding sequence of se-
lect’s we obtain the query at the end of the previous page (we used boldface to outline
modifications).

<bib>
select <book year=y>[t]
from <_>[(yb::Book|_)*] in [biblio],

b in yb,
<_>[(yp::Publisher|_)*] in [b],
p in yp,
<_>[(yt::Title|_)*] in [b],
t in yt,
<_ year=y>_ in [b]

where (p = <publisher>"Addison-Wesley")
and (y>>"1990")

Fig. 4. P � Q �

The translation P � � unnests these select’s
yielding the query of Figure 4. In the next sec-
tion we show that this has a very positive im-
pact on performances.

4 Pattern Query Optimisation
In this section we adapt classical database op-
timisation techniques to our patterns. Such
optimisations evaluate, as customary in the
database world, conditions just when needed
thus reducing the size of intermediate data contributing in the result construction and
also avoiding to visit useless parts of the document. More precisely, we proceed in four
steps.

Conjunctive normal form. The first step consists in putting the where condition in
conjunctive normal form and then moving into the from clause the parts of the condition
that can be expressed by a pattern. This is expressed by the following rewriting rule:

select e from f where c � select e from f ,Θ1(CNF(c)) where Θ2(CNF(c))
where CNF(c) is a conjunctive normal form of c, Θ1(c) represents the part of c that can
be expressed by a pattern and thus remounted in the “from” part, and Θ2(c) is the part
of c that remains in the “where” condition. Formally, Θ1 and Θ2 are the first and second
projections of the function Θ defined as:

Definition 2. Let i denote a scalar (i.e. an integer or a character) and v a value

Θ(v=e) = (v in [e], ‘true) Θ(count(e) = i) = ([_i] in [e], ‘true)
Θ(e >= i) = (i– –∗ in [e], ‘true) Θ(count(e) >> i) = ([_i _+] in [e], ‘true)
Θ(e >> i) = (�i+ 1�– –∗ in [e], ‘true) Θ(count(e) >= i) = ([_i _∗] in [e] , ‘true)
Θ(e <= i) = (∗– –i in [e], ‘true) Θ(count(e) << i) = ([(_?)i−1] in [e] , ‘true)
Θ(e << i) = (∗– –�i−1� in [e], ‘true) Θ(count(e) <= i) = ([(_?)i] in [e], ‘true)
Θ(member(v,e)) = ([_∗ v _*] in [e], ‘true)
Θ(c1 and . . . and cn) = ((((Θ1(c1), . . . ,Θ1(cn)) ,,,Θ2(c1) and . . . and Θ2(cn)))).

Θ(c) = (ε,c) (if none of the above applies)

A Full Pattern-Based Paradigm for XML Query Processing 247

<bib>
select <book year=y>[t]
from <_>[(yb::Book_)*] in [biblio],

b in yb,
<_>[(yp::Publisher|_)*] in [b],
p in yp,
<_>[(yt::Title|_)*] in [b],
t in yt,
<_ year=y>_ in [b],
<publisher>"Addison-Wesley" in [p]

where y>>"1990"

<bib>
select <book year=y>[t]
from <_>[(yb::Book|_)*] in [biblio],

<_ year=y>_&
<_>[(yp::Publisher|_)*]&
<_>[(yt::Title|_)*] in yb,
<publisher>"Addison-Wesley" in yp,
t in yt

where y>>"1990"

Fig. 5. Θ on P � Q � Fig. 6. P � Q � after the first 3 optimisation steps

where we use the notation _i to denote the juxtaposition of i occurrences of “_”. So for
instance the third rule indicates that the constraint, say, count(e) = 3 can be equivalently
checked by matching e against the pattern [_ _ _] (i.e. [_3]). We also used the notation
� f (i)� for the constant that is the result of f (i).

If we apply the rewriting to the query in Figure 4, then we can use the first case
of Definition 2 to express the condition p = <publisher>"Addison-Wesley" by a pattern,
yielding the query of Figure 5 (the rewriting does not apply to y >> "1990" since "1990"
is not a scalar but a string).

Useless declarations elimination. The second step consists in getting rid of useless
intermediate in-declarations that are likely to be generated by the translation of CQLX

into CQL:

select e◦ from f1, x in e, f2, p in [x], f3 where c � select e◦ from f1, x&p in e, f2 , f3 where c

Pattern consolidation. The third step of optimisation consists in gathering together pat-
terns that are matched against the same sequences.

select e◦ from f1,p1 in e, f2, p2 in e, f3 where c � select e◦ from f1, p1&p2 in e, f2, f3

where c

Note that both rewriting systems are confluent and noetherian (when applied in the or-
der). The result of applying these rewriting rules to the query in Figure 5 is shown in
Figure 6.

Pushing selections. The fourth and last step is the classical technique that pushes selec-
tions as close as possible to the declarations of the variables they use. So for instance the
clause y >> "1990" in Figure 6 is checked right after the capture of y. This is obtained by
anticipating an if_then_else in the implementation6. The algorithm, which is standard,
is omitted.

This kind of optimisation is definitely not new. It corresponds to a classical logical
optimisation for the relational model. The benefit is to reduce the size of the intermedi-
ate data that is used to the obtain the result.

6 More precisely, the query in Figure 6 is implemented by
transform [biblio] with <_>[(yb::Book|_)*] ->

transform yb with <_ year=y>[(yp::Publisher|yt::Title|_)*] ->
if (y>>"1990") then transform yp with <publisher>"Addison-Wesley" -> [<book year=y>[t]]

else []

248 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

5 Experimental Validation

Performance measurements were executed on a Pentium IV 3.2GHz with 1GB of RAM
running under FreeBSD 5.2.1. We compared performance results of the same query pro-
grammed in the different flavors of CQL. So we tested a same query in: (i) CQLX , that
is CQL in which we use the same path expressions as the XQuery query and no CDuce
pattern, (ii) CQLP, the CQL program automatically generated by applying to the CQLX

query the transformation Θ(P � �) of Sections 3.2 and 4 and the two rewritings for pat-
tern consolidation and useless declaration elimination that clean up the “garbage” intro-
duced by the translation, (iii, iv) CQLX

opt CQLP
opt, which are obtained by optimising

the two previous queries by the classical optimisation algorithm of pushing selections,
presented at the end of Section 4, and finally (v) CQL that is a handwritten (and hand
optimised) query in CQL. As we explained in the introduction, in order to strengthen
our results we chose not to use “//” in CQLX (since this is less heavily optimised by the
CDuce runtime than “/”) and instead always use the static types to translate it in terms
of “/” (as all the queries we considered allowed us to do so). This gives a clear further
advantage to CQLX .

To perform our tests we chose, somewhat arbitrarily, queries Q1, Q2, Q3, Q4, and
Q5 of the XML Query Use Cases. We then performed a second set of tests based on the
XMark benchmarks. Here our choice of queries was less random as we explain below.

Finally to test CQL runtime we compared our results with three different imple-
mentations of XQuery: Galax [3], Qizx [18], and Qexo [7, 8]. Galax is a reference im-
plementation of XQuery and, as CDuce, it is implemented in OCaml. Qizx/open is an
open-source Java implementation of XQuery specifications developed for commercial
distribution and whose target is the efficient execution of queries over large databases.
Qexo is a partial implementation of the XQuery language that achieves high perfor-
mance by compiling queries down to Java bytecode using the Kawa framework. The
sources of the queries are omitted for space reasons but they can all be found in the
extended version [5].

5.1 Use Cases

Briefly, query Q1 performs a simple selection. Queries Q2 and Q3 are “reconstructing”
queries, they both scan the whole bibliography, while the first one returns a flat list of
title author pairs (each pair being enclosed in a <result> element), the second returns the
title and all authors grouped in a <result> element. For each author in the bibliography,
query Q4 lists the author’s name and the titles of all books by that author, grouped
inside a "result" element. Last, query Q5 performs a join between two documents: for
each book found both in the document bound to biblio and in that bound to amazon Q5
lists the title of the book and its price from each source.

The results of our tests are presented in Figure 7, from which we omitted the times
for Galax: as a matter of fact we did not completed all the tests of Galax since it was
soon clear that the performances of Galax are several orders of magnitude worse than
those of Qizx and Qexo.

Measurements were performed for each query on randomly generated documents
of different sizes (expressed in KBytes). We also followed the spirit of the benchmark
and we generated documents with a selectivity rate (that we judged) typical of the bib-

A Full Pattern-Based Paradigm for XML Query Processing 249

Size Size2 fltCQL CQLX CQLopt
X CQLP CQLopt

P CQL Qizx Qexo

Q1 36 Kb 0.01 0.01 0.01 0.02 0.01 0.01 0.45 0.60
Q1 1.8 Mb 0.23 0.26 0.25 0.26 0.26 0.24 0.76 1.01
Q1 14 Mb 1.90 2.00 1.99 1.98 2.07 1.93 2.18 2.89
Q1 35 Mb 4.79 5.13 5.04 5.03 5.24 4.90 4.44 5.80
Q2 36 Kb 0.01 0.01 0.01 0.01 0.01 0.01 0.46 0.61
Q2 1.8 Mb 0.24 0.26 0.26 0.25 0.25 0.25 1.00 1.04
Q2 14 Mb 1.87 2.06 2.06 2.01 2.01 1.99 3.77 3.55
Q2 35 Mb 4.74 5.27 5.27 5.14 5.14 5.08 8.16 7.79
Q3 36 Kb 0.01 0.01 0.01 0.01 0.01 0.01 0.47 0.60
Q3 1.8 Mb 0.24 0.25 0.26 0.25 0.25 0.25 0.99 1.03
Q3 14 Mb 1.90 2.03 2.02 2.01 2.02 2.01 3.66 3.27
Q3 35 Mb 4.81 5.18 5.18 5.14 5.14 5.13 7.90 6.86
Q4 36 Kb 0.01 0.05 0.05 0.05 0.05 0.05 0.53
Q4 70 Kb 0.02 0.17 0.17 0.14 0.14 0.14 0.68
Q4 144 Kb 0.02 0.61 0.61 0.52 0.52 0.49 1.17
Q4 575 Kb 0.09 10.73 10.73 9.94 9.94 8.63 10.97
Q4 1.8 Mb 0.24 113.01 113.01 89.31 89.31 88.70 104.12
Q5 36 Kb 535 Kb 0.08 1.69 0.79 1.17 0.71 0.54 4.44 27.88
Q5 144 Kb 43 Kb 0.03 0.52 0.24 0.38 0.24 0.17 1.79 9.31
Q5 575 Kb 171 Kb 0.11 7.87 3.49 5.92 3.34 2.46 20.74 127.39
Q5 1.8 Mb 535 Kb 0.31 78.27 36.54 53.25 31.04 22.93 197 >1h
Q5 3.5 Mb 535 Kb 0.55 157.70 72.28 105.38 62.24 45.02 392

(flt = file load time, Size2 column reports the sizes of the second document in joins)

Fig. 7. Summary of all test results on the XQuery Use Cases

liographic application (that is quite low). Each test was repeated several times and the
table reports the average evaluation times (in seconds). We have reported the loading
time (in the column headed by “flt”, file load time) of the XML document from the
global execution time in order to separate the weight of the query engine and that of the
parser in the overall performances (of course we are interested in the former and not
in the latter). The execution times always include the time for performing optimisation,
when this applies, for type checking (just for CQL variants) and the file load time.

By comparing the load time with the overall execution time (we recall that the latter
includes the former) it is clear that the only computationally meaningful queries are
the Q4 and Q5 ones (Q4 was not executed in Qexo since it does not implement the
distinct_values operator). In these two cases the best performances are obtained by
CQL7.

7 A word must be spent on the performances of Q5 for Qizx. Whenever Qizx syntactically
detects a conjunctive join condition it dynamically generates a hash table to index it (for low
selective benchmarks, as the one we performed in our tests, this brings far better performance,
of course). Since we wanted to compare the performances of the query engines (rather than
the OCaml and Java libraries for hash tables) and because we believe that index generation
must be delegated to the query optimiser rather than implemented by the compiler, then in
our test we disabled this index generation (this is done by just adding an “or false” to the join
condition).

250 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

Size fltCQL CQLX CQLP CQL Qizx Qexo

Q1 1.5 Mb 0.15 0.15 0.15 0.15 0.57 0.74
Q1 29 Mb 2.57 2.58 2.58 2.58 2.16 2.58
Q1 72 Mb 6.61 6.65 6.64 6.62 4.42 5.08
Q1 145 Mb 14.10 14.18 14.15 14.13 8.16 9.31
Q8 1.5 Mb 0.15 0.21 0.21 0.17 1.00 34.51
Q8 29 Mb 2.57 26.03 22.96 13.09 75.90 >1h
Q8 72 Mb 6.61 156 133 72.81 476
Q8 145 Mb 14.19 630 542 285 1838

Q12 1.5 Mb 0.16 0.21 0.21 0.20 0.87
Q12 29 Mb 2.59 21.22 20.57 14.70 38.30
Q12 72 Mb 6.68 127 122 86.35 216
Q12 145 Mb 14.36 481 457 319 824
Q16 1.5 Mb 0.15 0.16 0.16 0.16 0.62 0.78
Q16 29 Mb 2.57 2.65 2.64 2.63 2.15 2.63
Q16 72 Mb 6.63 6.87 6.85 6.82 4.42 5.08
Q16 145 Mb 14.24 14.60 14.54 14.50 8.16 9.31

(flt = file load time)
Fig. 8. Summary of all test results on XMark

5.2 XMark

Following the suggestion of Ioana Manolescu (one of the XMark authors) we chose
four queries that should give a good overview of the main memory behaviour of the
query engines.

More precisely, our choice went on Q1, just because it is the simplest one, Q8 of
the “chasing references” section since it performs horizontal traversals with increasing
complexity, Q12 of the “join on values” section since it tests the ability to handle large
intermediate results, and finally on Q16 of the “path traversals” section to test vertical
traversals.

The results are summarised in Figure 8. We did not perform the tests on the opti-
mised versions of CQLX and CQLP since on the specific queries they are the identity
function. Q12 times for Qexo are absent because execution always ended with an un-
handled exception (probably because of a bug in the implementation of the arithmetic
library of Qexo but we did not further investigate).

Once more if we compare the load time with the execution time we see that the
only interesting queries to judge the quality of the engines are Q8 and Q12. In the
other queries the execution time is very close to the load time, so the performance is
completely determined by parsers. In these cases it is interesting to note that while CQL
uses an external parser, namely Expat (but the CDuce interpreter has an option that the
programmer can specify to use the less efficient but more debug-friendly Pxp parser),
Qexo and Qizx have event driven parsers that interact with the query engines in order to
avoid loading of useless parts of the document, whence the better performances. That
said, when performances are determined by the query engine, as in Q8 and Q12, CQL
shows once more the best results8.

8 Once more the test for Qizx was performed with the dynamic generation of hash tables dis-
abled.

A Full Pattern-Based Paradigm for XML Query Processing 251

6 Conclusion and Perspectives

In this article we presented CQL, a full pattern-matching based query language for
XML embedded in CDuce. Our main purpose was to demonstrate that patterns and
pattern matching (in CDuce sense) are a good candidate as an evaluation mechanism for
XML query processing. To do so, we first coupled CDuce patterns with a syntax very
common in the database area (select-from-where) and defined the new syntax in terms
of a translation semantics. Then, we extended this syntax to allow for an XQuery-like
style (CQLX). We chose to experiment with CQLX rather than with XQuery because
we wanted to rely on the very efficient pattern matching compilation and execution
of CDuce. Indeed, patterns are compiled into non-uniform tree automata [19] which
fully exploit type information. In order to demonstrate the power of pure patterns, we
provided an automatic translation from the former into the latter. Such a translation not
only shows that projections are useless in the context of CDuce patterns but also gives a
formal way of unnesting queries. Then we investigated further optimisations: the well-
known database logical optimisations. We therefore adapted such optimisations to the
context of CQL, providing a first step toward devising a general query optimiser in such
a context.

In order to validate our approach we performed performance measurements. The
purposes of such measurements were twofold: first, we wanted to demonstrate the effi-
ciency of pattern-matching based query languages by comparing CQL with efficiency-
oriented implementations of XQuery and, second, we wanted to check the relevance
of classical database logical optimisation techniques in a pattern-based framework. In
both cases, the obtained results were encouraging.

We are currently working on the following topics: (i) develop further (classical)
query optimisation techniques such as joins re-ordering, (ii) extend the pattern algebra
in order to partially account for descendants axes (at the expense of loosing type preci-
sion but still reaching a typed construction) (iii) formally study the expressive power of
CQL and finally, in a longer-term, (iv) coupling CQL with a persistent store and study
physical optimisation techniques.

Acknowledgements

The authors want to thank Massimo Marchiori for the pointer to Qexo, Xavier Franc for
the details on Qizx implementation, and Alain Frisch for the comments on this paper
and his help with the implementation of CDuce. Thanks to Dario Colazzo for his help
on XQuery type system. Very special thanks to Ioana Manolescu for her invaluable
suggestions and careful reading of a preliminary version of this paper.

References

1. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web : from Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1):68–88, 1997.

3. Bell-labs. Galax. http://db.bell-labs.com/galax/.
4. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose lan-

guage. In ICFP ’03, 8th ACM Int. Conf. on Functional Programming, pages 51–63, 2003.

252 Véronique Benzaken, Giuseppe Castagna, and Cédric Miachon

5. V. Benzaken, G. Castagna, and C. Miachon. CQL: a pattern-based query language for XML.
Complete version. Available at http://www.cduce.org/papers, 2005.

6. N. Bidoit and M. Ykhlef. Fixpoint calculus for querying semistructured data. In Int. Work-
shop on World Wide Web and Databases (WebDB), 1998.

7. P. Bothner. Qexo - the GNU Kawa implementation of XQuery.
Available at http://www.gnu.org/software/qexo/.

8. P. Bothner. Compiling XQuery to java bytecodes. In Proceedings of the First Int. Workshop
on XQuery Implementation, Experience and Perspectives <XIME-P/>, pages 31–37, 2004.

9. Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and Jonathan
Robie. XML Query Use Cases. T.-R. 20030822, World Wide Web Consortium, 2003.

10. Don Chamberlin, Peter Fankhauser, Massimo Marchiori, and Jonathan Robie. XML query
(XQuery) requirements. Technical Report 20030627, World Wide Web Consortium, 2003.

11. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for heterogeneous
data sources. In WebDB 2000 (selected papers), volume 1997 of LNCS, pages 1–25, 2001.

12. Z. Chen, H. V. Jagadish, L. Lakshmanam, and S Paparizos. From tree patterns to generalised
tree paterns: On efficient evaluation of xquery. In VLDB’03, pages 237–248, 2003.

13. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
http://www.w3.org/TR/xpath/, November 1999.

14. G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. “The Query
Language TQL”. In In 5th Int. Workshop on the Web and Databases (WebDB), 2002.

15. World Wide Web Consortium. XQuery: the W3C query language for XML – W3C working
draft, 2001.

16. A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. “XML-QL: A Query
Language for XML”. In WWW The Query Language Workshop (QL), 1998.

17. M. Fernández, J. Siméon, and P. Wadler. An algebra for XML query. In Foundations of
Software Technology and Theoretical Computer Science, number 1974 in LNCS, 2000.

18. X. Franc. Qizx/open. http://www.xfra.net/qizxopen.
19. A. Frisch. Regular tree language recognition with static information. In Proc. of the 3rd IFIP

Conference on Theoretical Computer Science (TCS), Toulouse, Kluwer, 2004.
20. Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping. In Pro-

ceedings, Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages 137–
146. IEEE Computer Society Press, 2002.

21. H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

22. Amélie Marian and Jérôme Siméon. Projecting XML elements. In Int. Conference on Very
Large Databases VLDB’03, pages 213–224, 2003.

23. A. J. Robie, J. Lapp, and D. Schach. “XML Query Language (XQL). In WWW The Query
Language Workshop (QL), Cambridge, MA, , 1998.

24. Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, and
Ralph Busse. Xmark: A benchmark for xml data management. In Proceedings of the Int’l.
Conference on Very Large Database Management (VLDB), pages 974–985, 2002.

Type Class Directives

Bastiaan Heeren and Jurriaan Hage

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{bastiaan,jur}@cs.uu.nl

Abstract. The goal of this paper is to improve the type error messages
in the presence of Haskell 98 type classes, in particular for the non-
expert user. As a language feature, type classes are very pervasive, and
strongly influence what is reported and when, even in relatively simple
programs. We propose four type class directives, and specialized type
rules, to lend high-level support to compilers to improve the type error
messages. Both have been implemented, and can be used to easily modify
the behavior of the type inference process.

Keywords: type error messages, type classes, directives, domain-specific
programming

1 Introduction

Improving the type error messages for higher-order, polymorphic, functional
programming languages continues to be an area of activity [1–4]. Type classes
have been studied thoroughly, both in theory and practice. In spite of this, very
little attention has been devoted to compensate the effects type classes have on
the quality of type error messages. In this paper, we present a practical and
original solution to improve the quality of type error messages by scripting the
type inference process.

To illustrate the problem type classes introduce, consider the following at-
tempt to decrement the elements of a list.

f xs = map -1 xs

The parse tree for this expression does not correspond to what the spacing
suggests: the literal 1 is applied to xs, the result of which is subtracted from
map. Notwithstanding, GHC will infer the following type for f. (Hugs will reject f
because of an illegal Haskell 98 class constraint in the inferred type.)

f :: (Num (t -> (a -> b) -> [a] -> [b]),

Num ((a -> b) -> [a] -> [b])) => t -> (a -> b) -> [a] -> [b]

Both subtraction and the literal 1 are overloaded in f’s definition1. Although the
polymorphic type of 1 is constrained to the type class Num, this restriction does
1 In Haskell, we have 1 :: Num a => a and (-) :: Num a => a -> a -> a.

M. Hermenegildo and D. Cabeza (Eds.): PADL 2005, LNCS 3350, pp. 253–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

254 Bastiaan Heeren and Jurriaan Hage

not lead to a type error. Instead, the constraint is propagated into the type of f.
Moreover, unifications change the constrained type into a type which is unlikely
to be a member of Num. A compiler cannot reject f since the instances required
could be given later on. This open-world approach for type classes is likely to
cause problems at the site where f is used. One of our directives allows us to
specify that function types will never be part of the Num type class. With this
knowledge we can reject f at the site of definition.

In this paper, we will improve the type error messages for Haskell 98 type
classes [5], in particular for the non-expert user. (Extensions to the class sys-
tem, like multi-parameter type classes, are outside the scope of this paper.) Our
approach is to design a language for type inference directives to adapt the type
inference process, and, in particular, to influence the error message reporting
facility.

For a given module X.hs, the directives can be found in a file called X.type.
If X.hs imports a module Y.hs, then all its directives are included as well.
This applies transitively to the modules that Y.hs imports, which we achieve by
storing directive information in object files. Our approach is similar to the one
followed in an earlier paper [6], in which we did not consider overloading.

The use of compiler directives has a number of advantages: They are not
part of the programming language, and can be easily turned off. The directives
function as a high-level specification language for parts of the type inference
process, precluding the need to know anything about how type inferencing is
implemented in the compiler. In tandem with our automatic soundness and
sanity checks for each directive, this makes them relatively easy to use. Also, it
should be straightforward for other compilers to support our directives as well.
Finally, although the focus of this paper is on the type inference process, the
compiler directive approach lends itself to other program analyses as well.

This paper makes the following contributions.

1. We present four type class directives to improve the resolution of overload-
ing (Section 2). With these directives we can report special purpose error
messages, reject suspicious class contexts, improve inferred types, and dis-
ambiguate programs in a precise way.

2. We discuss how the proposed directives can be incorporated into the process
of context reduction (Section 3).

3. We give a general language to describe invariants over type classes (Sec-
tion 4). This language generalizes some of our proposed directives.

4. We extend the specialized type rules [6] to handle type classes (Section 5).
As a consequence, we can report precise and tailor-made error messages for
incorrect uses of an overloaded function.

The type directives proposed in Section 2 have been implemented in our type
inference framework. The Helium compiler [7] is based on this framework, and
supports the extended specialized type rules.

Type Class Directives 255

2 Type Class Directives

In Haskell, new type classes are introduced with a class declaration. If a list
of superclasses is given at this point, then the instances of the type class must
also be member of each superclass; this is enforced by the compiler. To make a
type a member of a type class, we simply provide an instance declaration. Other
means for specifying type classes do not exist in Haskell.

Therefore, some properties of a type class cannot be described: for example,
we cannot exclude a type from a type class. To gain more flexibility, we propose
type class directives to enrich the specification of type classes. Each of these have
been implemented in our type inference framework.

The first directive we introduce is the never directive (Section 2.1), which
excludes a single type from a type class. This is the exact opposite of an instance
declaration, and limits the open-world character of that type class. Similar to this
case-by-case directive, we introduce a second directive to disallow new instances
for a type class altogether (Section 2.2). A closed type class has the advantage
that we know its limited set of instances.

Knowing the set of instances of a type class opens the door for two opti-
mizations. In the exceptional case that a type class is empty, we can reject every
function that requires some instance of that class. If the type class X has only
one member, say the type t, then a predicate of the form X a can improve a
to t. This is, in fact, an improvement substitution in Jones’ theory of qualified
types [8]. If we have (X a, Y a), and the set of shared instances is empty or a
singleton, then the same reasoning applies. For example, if the instances of X are
Int and Bool, and those of Y are Bool and Char, then a must be Bool. This is
easily discovered for Haskell 98 type classes by taking intersections of sets of
instances.

Our next directive, the disjoint directive, specifies that the intersection
of two type classes should be empty (Section 2.3). This is another instance
of an invariant over sets of types, which is formulated by the programmer, and
maintained by the compiler. In Section 4, we present a small language to capture
this invariant, and many others besides.

Finally, Section 2.4 discusses a default directive for type classes, which helps
to disambiguate in case overloading cannot be resolved. This directive refines the
ad hoc default declarations supported by Haskell.

In the remainder of this section, we explore the directives in more detail, and
conclude with a short section on error message attributes.

2.1 The never Directive

Our first directive lets us formulate explicitly that a type should never become
a member of a certain type class. This statement can be accompanied with a
special purpose error message, reported in case the forbidden instance is needed
to resolve overloading. The main advantage of the never directive is the tailor-
made error message for a particular case in which overloading cannot be resolved.
In addition, the directive guarantees that the outlawed instance will not be given

256 Bastiaan Heeren and Jurriaan Hage

in future. We illustrate the never directive with an example. For the sake of
brevity, we keep the error messages in our examples rather terse. Error message
attributes, which we will discuss in Section 2.5, can be used to create a more
verbose message that depends on the actual program.

never Eq (a -> b): functions cannot be tested for equality

never Num Bool: arithmetic on booleans is not supported

These two directives should be placed in a .type file2, which is considered prior
to type inference, but after collecting all the type classes and instances in scope.
Before type inference, we should check the validity of the directives. Each incon-
sistency between the directives and the instance declarations results in an error
message or warning. For example, the following could be reported at this point.

The instance declaration for

Num Bool at (3,1) in A.hs

is in contradiction with the directive

never Num Bool defined at (1,1) in A.type

We proceed with type inference if no inconsistency is found. If arithmetic on
booleans results in a Num Bool predicate, we report our special purpose error
message. For the definition

f x = if x then x+1 else x

we simply report that arithmetic on booleans is not supported, and highlight the
arithmetical operator +. An extreme of concision results in the following type
error message.

(1,19): arithmetic on booleans is not supported

The never directive is subject to the same restrictions as any instance decla-
ration in Haskell 98: a class name followed by a type constructor and a list of
unique type variables (we took the liberty of writing function arrow infix in the
example presented earlier). Haskell 98 does not allow overlapping instances,
and similarly we prohibit overlapping nevers. This ensures that there is always
at most one directive which we can use for constructing an error message. If we
drop this restriction, then it becomes arbitrary which message is generated.

never Eq (Int -> a): message #1

never Eq (b -> Bool): message #2

In this example, it is unclear what will be reported for the type class predicate
Eq (Int -> Bool). One way to cope with this situation is to require a third
directive for the overlapping case, namely never Eq (Int -> Bool). This im-
plies that we can always find and report a most specific directive. Note that in
the context of overlapping never directives, we have to postpone reporting a
violating class predicate since more information about a type variable in this
assertion may make a more specific directive a better candidate.
2 Our convention in this paper is to write all type inference directives on a light gray

background.

Type Class Directives 257

2.2 The close Directive

With the never directive we can exclude one type from a type class. Similar
to this case-by-case directive, we introduce a second type class directive which
closes a type class in the sense that no new instances can be defined. As a result
of this directive, we can report special error messages for unresolved overloading
for a particular type class. A second advantage is that the compiler can assume
to know all instances of the given type class since new instances are prohibited,
which can be exploited when generating the error message.

One subtle issue is to establish at which point the type class should be closed.
This can be either before or after having considered the instance declarations
defined in the module. In this section we discuss only the former. A possible use
for the latter is to close the Num type class in Prelude.type so that everybody
who imports it may not extend the type class, but the Prelude module itself
may specify new instances for Num.

Before we start with type inference, we check for each closed type class that
no new instance declarations are provided. A special purpose error message is
attached to each close directive, which is reported if we require a non-instance
type to resolve overloading for the closed type class. Such a directive can live
side by side with a never directive. Since the latter is strictly more informative,
we give it precedence over a close directive if we have to create a message. As
an example, we close the type class for Integral types, defined at the standard
Prelude. Hence, this type class will only have Int and Integer as its members.

close Integral: the only instances of Integral are Int and Integer

The main advantage of a closed type class is that we know the fixed set of
instances. Using this knowledge, we can influence the type inference process. As
discussed in the introduction to Section 2, we can reject definitions early on (in
case the set of instances for a certain type class is empty) or improve a type
variable to a certain type (in case the set of instances is a singleton).

For example, consider a function f :: (Bounded a, Num a) => a -> a.
The type class Bounded contains all types that have a minimal and maximal
value, including Int and Char. However, Int is the only numeric type among
these. Hence, if both Bounded and Num are closed, then we may safely improve
f’s type to Int -> Int.

The advantages of the close directive would be even higher if we drop the
restrictions of Haskell 98, because this directive allows us to reject incorrect
usage of a type class early on. We illustrate this with the following example.

class Similar a where

(~=) :: a -> a -> Bool

instance Similar Int where

(~=) = (==)

Assume that the previous code is imported in a module that closes the type class
Similar.

258 Bastiaan Heeren and Jurriaan Hage

close Similar: the only instance of Similar is Int.

f x xs = [x] ~= xs

GHC version 6.2 (without extensions) accepts the program above, although an
instance for Similar [a] must be provided to resolve overloading. The type
inferred for f is

f :: forall t. (Similar [t]) => t -> t -> Bool

although this type cannot be declared in a type signature for f3. This type makes
sense: the function f can be used in a different module, on the condition that
the missing instance declaration is provided. However, if we intentionally close
the type class, then we can generate an error for f at this point.

In this light, the close directive may become a way to moderate the power
of some of the language extensions by specifying cases where such generality is
not desired. An alternative would be to take Haskell 98 as the starting point,
and devise type class directives to selectively overrule some of the language
restrictions. For instance, a directive such as general X could tell the compiler
not to complain about predicates concerning the type class X that cannot be
reduced to head-normal form. Such a directive would allow more programs. In
conclusion, type class directives give an easy and flexible way to specify these
local extensions and restrictions.

2.3 The disjoint Directive

Our next directive deliberately reduces the set of accepted programs. In other
words: the programs will be subjected to a stricter type discipline. The disjoint
directive specifies that the instances of two type classes are disjoint, i.e., no
type is shared by the two classes. A typical example of two type classes that
are intentionally disjoint are Integral and Fractional (see the Haskell 98
Report [5]). If we end up with a type (Fractional a, Integral a) =>
after reduction, then we can immediately generate an error message, which can
also explain that “fractions” are necessarily distinct from “integers”. Note that
without this directive, a context containing these two class assertions is happily
accepted by the compiler, although it undoubtedly results in problems when we
try to use this function. Acknowledging the senselessness of such a type prevents
misunderstanding in the future. A disjoint directive can be defined as follows.

disjoint Integral Fractional:

something which is fractional can never be integral

Because Floating is a subclass of Fractional (each type in the former must
also be present in the latter), the directive above implies that the type classes
Integral and Floating are also disjoint.
3 In our opinion, it should be possible to include each type inferred by the compiler

in the program. In this particular case, GHC suggests to use the Glasgow extensions,
although these extensions are not required to infer the type.

Type Class Directives 259

In determining that two type classes are disjoint, we base our judgements on
the set of instance declarations for these classes, and not on the types implied
by the instances. Therefore, we reject instance declarations C a => C [a] and
D b => D [b] if C and D must be disjoint. A more liberal approach is to consider
the set of instance types for C and D, so that their disjointness depends on other
instances given for these type classes.

Take a look at the following example which mixes fractions and integrals.

wrong = div 3 8 + 1/2

The disjoint directive helps to report an appropriate error message for the
definition of wrong. In fact, without this directive we end up with the type
(Integral a, Fractional a) => a. GHC reports an ambiguous type variable
as a result of the monomorphism restriction.

Disjoint.hs:1:

Ambiguous type variable ‘a’ in these top-level constraints:

‘Integral a’ arising from use of ‘div’ at Disjoint.hs:1

‘Fractional a’ arising from use of ‘/’ at Disjoint.hs:1

Possible cause: the monomorphism restriction applied

to the following:

wrong :: a (bound at Disjoint.hs:1)

Probable fix: give these definition(s) an explicit type

signature

Ironically, it is the combination of the two class predicates that makes the de-
faulting mechanism fail (no numeric type is instance of both classes), which in
turn activates the monomorphism restriction rule.

2.4 The default Directive

One annoying aspect of overloading is that seemingly innocent programs are
in fact ambiguous. For example, show [] is not well-defined, since the type
of the elements must be known (and showable) in order to display the empty
list. This problem can only be circumvented by an explicit type annotation. A
default declaration is included as special syntax in Haskell to help disambiguate
overloaded numeric operations. This approach is fairly ad hoc, since it only covers
the (standard) numeric type classes. Our example suggests that a programmer
could also benefit from a more liberal defaulting strategy, which extends to other
type classes. Secondly, the exact rules when defaulting should be applied are
unnecessarily complicated (see the Haskell Report [5] for the exact specification).
We think that a default declaration is nothing but a type class directive, and
that it should be placed amongst the other directives instead of being considered
part of the programming language. Taking this viewpoint paves the way for
other, more complex defaulting strategies as well.

One might wonder at this point why the original design is so conservative.
Actually, the caution to apply a general defaulting strategy is justified since it

260 Bastiaan Heeren and Jurriaan Hage

changes the semantics of a program. Inappropriate defaulting unnoticed by a
programmer is unquestionably harmful. By specifying default directives, the
user has full control over the defaulting mechanism. A warning should be raised
to inform the programmer that a class predicate has been defaulted. Although we
do not advocate defaulting in large programming projects, it is unquestionably
useful at times, for instance, to show the result of an evaluated expression in an
interpreter. Note that GHC departs from the standard, and applies a more liberal
defaulting strategy in combination with the emission of warnings, which works
fine in practice.

Take a look at the following datatype definition for a binary tree with values
of type a.

data Tree a = Bin (Tree a) a (Tree a) | Leaf deriving Show

A function to show such a tree can be derived automatically, but it requires a
show function for the values stored in the tree. This brings us to the problem:
show Leaf is of type String, but it is ambiguous since the tree that we want to
display is polymorphic in the values it contains. We define default directives to
remedy this problem.

default Num (Int, Integer, Float, Double)

default Show ((), String, Bool, Int)

The first directive is similar to the original default declaration, the second de-
faults predicates concerning the Show type class. Obviously, the types which we
use as default for a type class must be a member of the class.

Defaulting works as follows. For a given type variable a, let P = {X1 a,
X2 a, ..., Xn a} be the set of all predicates in the context which contain a.
Note that only these predicates determine which type may be selected for a as
a default, and that other predicates in the context are not influenced by this
choice. If at least one of the Xi has a default directive, then we consider the
default directives for each of the predicates in P in turn (if they exist). For each
of these default directives, we determine the first type which satisfies all of P.
If this type is the same for all default directives of P, then we choose this type
for a. If the default directives cannot agree on their first choice, then defaulting
does not take place.

If default directives are given for a type class and for its subclass, we should
check that the two directives are coherent. For instance, Integral is a subclass
of Num, and hence we expect that defaulting Integral a and Num a has the same
result as defaulting only Integral a.

Considering defaulting as a directive allows us to design more precise de-
faulting strategies. For instance, we could have a specific default strategy for
showing values of type Tree a: this requires some extra information about the
instantiated type of the overloaded function show.

2.5 Error Message Attributes
The error messages given so far are context-insensitive, but for a real implemen-
tation this is not sufficient. Therefore, we use error message attributes, which

Type Class Directives 261

may hold context dependent information. For example, location information is
present in an attribute @range@ (attributes are written between @ signs). Due
to space limitations we restrict ourselves to an example for the close directive.

close Show:

The expression @expr.pp@ at @expr.range@ has the type @expr.gentype@.

This type is responsible for the introduction of the class predicate

@errorpredicate@, which is not an instance of @typeclass@ due to

the close directive defined at @directive.range@.

The attributes in the error message are replaced by information from the actual
program. For instance, @directive.range@ is changed into the location where
the close directive is defined, and @expr.pp@ is unfolded to a pretty printed
version of the expression responsible for the introduction of the erroneous pred-
icate. We can devise a list of attributes for each directive. These lists differ: in
case of the disjoint directive, for instance, we want to refer to the origin of
both class predicates that contradict.

A complicating factor is that the predicate at fault may not be the predicate
which was introduced. Reducing the predicate Eq [(String, Int -> Int)]
will eventually lead to Eq (Int -> Int). We would like to communicate this
reasoning to the programmer as well, perhaps by showing some of the reduction
steps.

3 Implementation

Type inference for Haskell is based on the Hindley-Milner [9] type system.
Along the way, types are unified, and when unification fails, an error message is
reported. An alternative method is to collect equality constraints to encapsulate
the relation between various types of parts of the program, and solve these af-
terwards. Type inference for Haskell 98 is widely studied and well understood:
we suggest “Typing Haskell in Haskell” [10] for an in-depth study. To support
overloading, we extend the Hindley-Milner system and propagate sets of type
class predicates. For each binding group we perform context reduction, which
serves to simplify sets of type class predicates, and to report predicates that
cannot be resolved. Context reduction can be divided into three phases.

In the first phase, the predicates are simplified by using the instance decla-
rations until they are in head-normal form, that is, of the form X (a t1. . .tn)
where a is a type variable. Typically, we get predicates where n is zero. Predi-
cates that cannot be reduced to this form are reported as incorrect. For instance,
Eq [a] can be simplified to Eq a, the predicate Eq Int can be removed alto-
gether, and an error message is created for Num Bool.

Duplicate predicates are removed in the second phase, and we use the type
class hierarchy to eliminate predicates entailed by assertions about a subclass.
For instance, Eq is the superclass of Ord, and, hence, Ord a implies Eq a. If we
have both predicates, then Eq a can be safely discarded.

In the final phase, we report predicates that give rise to an ambiguous type.
For instance, the type (Read a, Show a) => String -> String, inferred for

262 Bastiaan Heeren and Jurriaan Hage

standard
error message

close
directives

default
directives

1. Simplify
to hnf

P

never
directives

specialized
error message

specialized
error message

non-hnf
predicates

5. Detect
ambiguities

Q

ambiguous
predicates

2. Removal of
duplicates and
superclasses

additional
error message

3. disjoint
directives

4. close
directives

standard
error message

impr.
substitution

improvement
substitution

(singleton type class)

additional
error message

(empty type class)

Fig. 1. Context reduction with type class directives for Haskell 98

the famous show . read example, is ambiguous since there is no way we can
determine the type of a, which is needed to resolve overloading. Note that we
can postpone dealing with predicates containing monomorphic type variables.

We continue with a discussion on how the four type class directives can be in-
corporated into context reduction. Figure 1 gives an overview. The first, second,
and fifth step correspond to the three phases of the traditional approach. The
thickened horizontal line reflects the main process in which the set of predicates
P is transformed into a set of predicates Q.

The first modification concerns the predicates that cannot be simplified to
head-normal form. If a never or close directive is specified for such a predicate,
then we report the specialized error message that was declared with the directive.
Otherwise, we proceed as usual and report a standard error message.

The disjoint directives and closed type classes are handled after removal
of duplicates and super-classes. At this point, the predicates to consider are in
head-normal form. A disjoint directive creates an error message for a pair of
predicates that is in conflict. Similarly, if we can conclude from the closed type
classes that no type meets all the requirements imposed by the predicates for
a given type variable, then an error message is constructed. If we, on the other
hand, discover that there is a single type which meets the restrictions, then we
assume this type variable to be that particular type. This is an improvement sub-
stitution [8]. Because we consider all predicates involving a certain type variable
at once, the restrictions of Haskell 98 guarantee that improvement substitu-
tions cannot lead to more reduction steps.

Finally, we try to avoid reporting ambiguous predicates by inspecting the
given default directives, as described in Section 2.4. Defaulting a type variable
by applying these directives results again in an improvement substitution.

The use of improvement substitutions leads to more programs being accepted,
while others are now rejected. The sum of their effects can be hard to predict,
and not something to rely on in large programming projects. Even without im-
provement substitutions, the never, close, and disjoint directives can be quite
useful.

Type Class Directives 263

4 Generalization of Directives

In this section, we sketch a generalization of the first three directives described
in Section 2. This part has not been implemented, but gives an idea how far we
expect type class directives can go, and what benefits accrue.

Essentially, a type class describes a (possibly infinite) set of types, and most
of the proposed directives can be understood as constraints over such sets. In
fact, they describe invariants on these sets of types, enriching the means of
specification in Haskell, which is limited to membership of a type class (instance
declaration), and a subset relation between type classes (class declaration).

We present a small language to specify invariants on the class system. The
language is very expressive, and it may be necessary to restrict its power for
reasons of efficiency and decidability, depending on the type (class) system to
which it is added.

Constraint ::= Type EltOp Set | Set SetOp Set
Set ::= BinOp Set Set | SetLiteral | Class
SetLiteral ::= {} | { Type (, Type)∗ }
EltOp ::= isin | isnotin
SetOp ::= <= | == | >=
BinOp ::= intersect | union | difference

Each constraint can be followed by an error message. If necessary, syntactic sugar
can be introduced for special directives such as never and disjoint.

Monad == {Maybe, [], IO}: only Maybe, [], and IO are monads today.

Read == Show

intersect Egglayer Mammal <= {Platypus}

The first example directive prevents new instances for the Monad class, while
Read == Show demands that in this module (and all modules that import it)
the instances for Show and Read are the same. A nice example of an invariant is
the third directive, which states that only the duckbilled platypus can be both
in the type class for egg layers and in Mammal. This directive might be used to
obtain an improvement substitution (as discussed in Section 2): if we have the
predicates Mammal a and Egglayer a, then a must be Platypus. This example
shows that the directives can be used to describe domain specific invariants over
class hierarchies.

5 Specialized Type Rules

In an earlier paper [6], we introduced specialized type rules to improve type
error messages. The main benefits of this facility are that for certain collections
of expressions, the programmer can

1. change the order in which unifications are performed, and
2. provide special type error messages, which can exploit this knowledge,
3. with the guarantee that the underlying type system is unchanged.

264 Bastiaan Heeren and Jurriaan Hage

This facility is especially useful for domain specific extensions to a base language
(such as Haskell), because the developer of such a language can now specify
error messages which refer to concepts in the domain to replace the error mes-
sages phrased in terms of the underlying language. We present an extension of
these type rules which allows class assertions among the equality constraints
to deal with overloading. This extension has been implemented in the Helium
compiler [7].

Consider the function spread, which returns the difference between the small-
est and largest value of a list, and a specialized type rule for this function, given
that it is applied to one argument.

spread :: (Ord a, Num a) => [a] -> a

spread xs = maximum xs - minimum xs

xs :: t1;

spread xs :: t2;

t1 == [t3]: @xs.pp@ must be a list

t3 == t2: @expr.pp@ should return a value of type @t3@

Eq t2: @t2@ is not an instance of Eq, let alone Ord or Num

Ord t2: @t2@ should have a linear ordering imposed on it

Num t2: @t2@ should allow numerical operations

A specialized type rule consists of a deduction rule, followed by a list of con-
straints. In the consequent of the deduction rule, spread xs :: t2, we describe
the expressions of interest. Since xs also occurs above the line, it is considered to
be a meta-variable which functions as a placeholder for an arbitrary expression
(with a type to which we can refer as t1).

The deduction rule is followed by a number of constraints. The first of these
states that the type t1 is a list type, with elements of type t3 (t3 is still un-
constrained at this point). The next equality constraint constrains the type t3
to be the same as the type of spread xs. Note that the listed constraints are
verified from top to bottom, and this fact can be exploited to yield very precise
error messages.

For class assertions we can also exploit the order of specification. Although
membership of Ord or Num implies membership of Eq, we can check the latter
first, and give a more precise error message in case it fails. Only when Eq t2
holds, do we consider the class assertions Ord t2 and Num t2. Note that the
assertion Eq t2 does not change the validity of the rule.

Context reduction takes place after having solved the unification constraints.
This implies that listing class assertions before the unification constraints makes
little sense, and only serves to confuse people. Therefore, we disallow this.

Equality constraints can be moved into the deduction rule, in which case it
is given a standard error message. This facility is essential for practical reasons:
it should be possible to only list those constraints for which we expect special
treatment. Similarly, we may move a class assertion into the deduction rule.
Notwithstanding, this assertion is checked after all the unification constraints.

Type Class Directives 265

All specialized type rules are automatically examined in that they leave the
underlying type system unchanged. This is an essential feature, since a mistake
is easily made in these rules. We compare the set of constraints implied by the
specialized type rule (say S) with the set that would have been generated by
the standard inference rules (say T). A type rule is only accepted if S equals T
under an entailment relation. This relation is a combination of entailment for
class predicates and for equality constraints.

6 Related Work

A number of papers address the problem of improving the type error mes-
sages produced by compilers for functional programming languages. Several ap-
proaches to improve on the quality of error messages have been suggested. One
of the first proposals is by Wand [11], who suggests to modify the unification
algorithm such that it keeps track of reasons for deductions about the types of
type variables. Many papers that followed elaborate on his idea. At the same
time, Walz and Johnson [12] suggested to use maximum flow techniques to iso-
late and report the most likely source of an inconsistency. This can be considered
the first heuristic-based system.

Recently, Yang, Michaelson, and Trinder [2] have reported on a human-like
type inference algorithm, which mimics the manner in which an expert would
explain a type inconsistency. This algorithm produces explanations in plain En-
glish for inferred (polymorphic) types. McAdam [1] suggested to use unification
of types modulo linear isomorphism to automatically repair ill-typed programs.
Haack and Wells [3] compute a minimal set of program locations (a type error
slice) that contribute to a type inconsistency. The Chameleon type debugger is
developed by Stuckey, Sulzmann, and Wazny [4], and helps to locate type errors
in an interactive way.

Elements of our work can be found in earlier papers: closed type classes were
mentioned by Shields and Peyton Jones [13], while the concepts of disjoint type
classes and type class complements were considered by Glynn et al. [14]. Type
class directives lead to improvement substitutions which are part of the frame-
work as laid down by Jones [8]. All these efforts are focused on the type system,
while we concentrate on giving good feedback by adding high-level support to
compilers via compiler directives. Moreover, we generalize these directives to
invariants over type classes.

A different approach to tackle language extensions is followed in the DrScheme
project [15], which introduces language levels (syntactically restricted variants)
to gradually become familiar with a language.

7 Conclusion and Future Work

This paper offers a solution to compensate the effect that the introduction of
overloading (type classes) has on the quality of reported error messages. In gen-
eral, the types of overloaded functions are less restrictive, and therefore some

266 Bastiaan Heeren and Jurriaan Hage

errors may remain undetected. At the same time, a different kind of error mes-
sage is produced for unresolved overloading, and these errors are often hard to
interpret.

To remedy the loss of clarity in error messages, a number of type class di-
rectives have been proposed, and we have indicated how context reduction can
be extended to incorporate these directives. The directives have the following
advantages.

– Tailor-made, domain-specific error messages can be reported for special cases.
– Functions for which we infer a type scheme with a suspicious class context

can be detected (and rejected) at an early stage.
– An effective defaulting mechanism assists to disambiguate overloading.
– Type classes with a limited set of instances help to improve and simplify

types.

Furthermore, we have added type class predicates to the specialized type rules,
and the soundness check has been generalized accordingly.

We see several possible directions for future research. A small language to
specify invariants on the class system (see Section 4) seems to be a promising
direction, and this requires further investigation. The more expressive such a
language becomes, the more need there is for some form of analysis of these
invariants. Another direction is to explore directives for a number of the proposed
extensions to the type class system [16], and to come up with new directives to
alleviate the problems introduced by these extensions.

In both these cases, we see the need for a formal approach, so that the
effects of our (more general) directives on our (extended) language can be fully
understood. The constraint handling rules (used in [14]) are a good starting
point for such an approach.

Furthermore, we would like to lift our ideas on directives to Jones’ theory of
qualified types [8]. As a result, we want to look for directives to support other
qualifiers that fit in his framework. Besides the type class predicates discussed
in this paper, we plan to investigate predicates for extensible records, and for
subtyping.

Acknowledgements

We like to thank Daan Leijen, Alexey Rodriguez Yakushev, Doaitse Swierstra,
and the anonymous reviewers for their suggestions and comments on this paper.

References

1. McAdam, B.: How to repair type errors automatically. In: 3rd Scottish Workshop
on Functional Programming, Stirling, U.K. (2001) 121–135

2. Yang, J., Michaelson, G., Trinder, P.: Explaining polymorphic types. The Com-
puter Journal 45 (2002) 436–452

Type Class Directives 267

3. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order lan-
guages. In: Proceedings of the 12th European Symposium on Programming. (2003)
284–301

4. Stuckey, P., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In:
Haskell Workshop, New York, ACM Press (2003) 72 – 83

5. Peyton Jones, S., ed.: Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003) http://www.haskell.org/onlinereport/.

6. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process. In:
Eighth ACM Sigplan International Conference on Functional Programming, New
York, ACM Press (2003) 3 – 13

7. Heeren, B., Leijen, D., van IJzendoorn, A.: Helium, for learning Haskell. In:
ACM Sigplan 2003 Haskell Workshop, New York, ACM Press (2003) 62 – 71
http://www.cs.uu.nl/helium.

8. Jones, M.P.: Simplifying and improving qualified types. In: International Confer-
ence on Functional Programming Languages and Computer Architecture. (1995)
160–169

9. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978) 348–375

10. Jones, M.P.: Typing Haskell in Haskell. In: Haskell Workshop. (1999)
11. Wand, M.: Finding the source of type errors. In: Conference Record of the 13th An-

nual ACM Symposium on Principles of Programming Languages, St. Petersburg,
FL (1986) 38–43

12. Walz, J.A., Johnson, G.F.: A maximum flow approach to anomaly isolation in
unification-based incremental type inference. In: Conference Record of the 13th
Annual ACM Symposium on Principles of Programming Languages, St. Peters-
burg, FL (1986) 44–57

13. Shields, M., Peyton Jones, S.: Object-oriented style overloading for Haskell. In:
Workshop on Multi-Language Infrastructure and Interoperability (BABEL’01).
(2001)

14. Glynn, K., Stuckey, P., Sulzmann, M.: Type classes and constraint handling rules.
In: First Workshop on Rule-Based Constraint Reasoning and Programming. (2000)

15. Findler, R.B., Clements, J., Cormac Flanagan, M.F., Krishnamurthi, S., Steckler,
P., Felleisen, M.: DrScheme: A programming environment for Scheme. Journal of
Functional Programming 12 (2002) 159–182

16. Peyton Jones, S., Jones, M., Meijer, E.: Type classes: an exploration of the design
space. In: Haskell Workshop. (1997)

Author Index

Alimarine, Artem 203
Almendros-Jiménez, Jesús M. 158

Bailey, James 174
Benzaken, Véronique 235
Brauner, Nadia 22
Brooks, Daniel R. 37

Castagna, Giuseppe 235
Corral, Antonio 158

Debray, Saumya 5
Dong, Yifei 113

Echahed, Rachid 22
Erdem, Esra 37

Finke, Gerd 22

Glück, Robert 219
Gomez-Perez, Jose Manuel 187
Gregor, Hanns 22
Gupta, Gopal 98

Hage, Jurriaan 253
Heeren, Bastiaan 253
Heymans, Stijn 128

Karczmarczuk, Jerzy 7
Kawabe, Masahiko 219

Leuschel, Michael 98

Lopes, Ricardo 143

Miachon, Cédric 235
Minett, James W. 37
Munoz-Hernandez, Susana 187

Pontelli, Enrico 67
Prost, Frederic 22

Ramakrishnan, C.R. 113
Ramsey, Norman 1
Ringe, Donald 37

Saad, Emad 67
Santos Costa, Vı́tor 143
Smetsers, Sjaak 203
Smolka, Scott A. 113
Stuckey, Peter J. 174

Tanasescu, Vlad 52

Van Nieuwenborgh, Davy 128
Vermeir, Dirk 128

Wang, Qian 98
Wojciechowski, Pawe�l T. 52

Xi, Hongwei 83

Yang, Ping 113

Zhu, Dengping 83

	Frontmatter
	Invited Talks
	Building the World from First Principles: Declarative Machine Descriptions and Compiler Construction
	Code Compression

	Papers
	Functional Framework for Sound Synthesis
	Specializing Narrowing for Timetable Generation: A Case Study
	Character-Based Cladistics and Answer Set Programming
	Role-Based Declarative Synchronization for Reconfigurable Systems
	Towards a More Practical Hybrid Probabilistic Logic Programming Framework
	Safe Programming with Pointers Through Stateful Views
	Towards Provably Correct Code Generation via Horn Logical Continuation Semantics
	A Provably Correct Compiler for Efficient Model~Checking of Mobile~Processes
	An Ordered Logic Program Solver
	Improving Memory Usage in the BEAM
	Solving Constraints on Sets of Spatial Objects
	Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization
	Solving Collaborative Fuzzy Agents Problems with CLP(\mathcal{FD})
	Improved Fusion for Optimizing Generics
	The Program Inverter LRinv and Its Structure
	A Full Pattern-Based Paradigm for XML Query Processing
	Type Class Directives

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

